

16th International
Olympiad on Astronomy and Astrophysics 2023

Proceedings

16th International
 Olympiad on Astronomy and Astrophysics 2023

Proceedings

Silesia, Poland

Table of Contents

Preface
16th IOAA
20 Organizing Committee
22 Tasks Authors
23 Judges
24 Students - participants of the 16th IOAA
32 Leaders
36 Observers
38 Guides
40 Helping volunteers
41 Media Coverage
41 Local Police supor
Schedule
Tasks
Answers
Results
Statistical summary

71 Minutes of the International Board Meeting held on 14th August 2023

Posters and media

180 Audience Award Winner
181 Best poster Winner
183 The organizers of the 16th International
Olympiad on Astronomy and Astrophysics
would like to thank Professor Mihail Sandu
184 The Morning Star
186 Headlines
Photo gallery

Preface

After the conclusion of the 16th IOAA, it is a time for celebration but also time for self-reflection. Looking back, we can safely say that the 16th IOAA in Poland set new benchmarks on how to run a successful event both academically and administratively. The questions designed were innovative, especially those for the data analysis, planetarium and sky observations. The jury members grading the answersheets were well versed in their tasks and the leaders of the academic programme marshalled this team superbly. From an administrative point of view, the event was executed in a flawless manner. The lodging/boarding arrangements for both students as well as leaders, the examination venues, the ceremonies, the excursions, everything was well thought out. The organising team from Silesian planetarium, led personally by the planetarium director, worked tirelessly and they had full backing of the city, provincial and federal government.

From the participants point of view, this was the first IOAA where the number of participating countries crossed 50 , with the inclusion of several new countries. The competition field is also getting stronger with more countries winning some awards or other than ever before. This year students from 42 countries won at least one award and students from 16 countries won gold medals. These are very healthy trends and augur well for the future of IOAA. Again a part of the credit should go to organisers, who designed a well balanced competition, giving fair chances to participants from all countries.

Poland has a long and illustrious tradition of doing Astronomy as well as a long history of conducting national astronomy Olympiads. With events like these we clearly see how this long experience translates into a world class event which the host country can be proud of. Let us hope that the future hosts uphold the lofty standards set by Polish organisers and take future IOAA to new heights.

Professor Aniket Sule President of The Intenational Olympiad on Astronomy and Astrophysics

The 16th International Olympiad on Astronomy and Astrophysics is already behind us. Those were extraordinary days. For the second time in history, our voivodeship had the honor of hosting the most outstanding young space enthusiasts from all over the world. While the Olympiad participants were solving difficult theoretical and observational tasks, we were facing equally complicated logistic and organizational challenges. And we succeeded! When, during the closing ceremony of the Olympiad, I handed out medals to the participants and winners on stage, I felt proud in my heart not only for these young enthusiasts of astronomy and astrophysics, but also for a whole host of people thanks to whom the Olympiad turned out to be a success: employees of the Silesian Planetarium, volunteers, officials of the Silesian Marshal's Office and all the people who made this event an important part of the history of our region.

I am glad that we met at the Planetarium - Silesian Science Park, which thanks to the Voivodeship's own funds and funding from the European Union, is currently one of the most modern institutions of this kind in the world. I know that our projection system - especially the analog stars made a great impression on the participants during the Olympic presentations.

It was a great honor for me to have the opportunity to meet the next generation of astronomers who, in just a few years, working in internationa research teams, will be looking for answers to the most important questions that humans have been asking since the beginning of our species.

The 16th International Olympiad on Astronomy and Astrophysics was held on the 550th anniversary of the birth of the great Polish astronomer Nicolaus Copernicus. As we all know, thanks to him our civilization could look at the Earth's place in the Universe from a completely new perspective. I am convinced that in your scientific work you will also break established patterns to reveal further secrets the Universe that are still hidden to us.

Ladies and Gentlemen,
Ladies and Gentlemen,

For the second time in its history, the Silesian Planetarium received the privilege of organizing the International Olympiad on Astronomy and Astrophysics. This extraordinary time is already behind us. Many good emotions and memories still remain after several days spent together. However, as we know very well, human memory can be unreliable and that is why in this book we have included important information related to this event. These several days of olympic competition were preceded by several months of preparations.

I would like to thank all the people who made it possible to organize and conduct the competition in the Silesian Voivodeship, especially the President of the IOAA, Professor Aniket Sule, and the General Secretary of the IOAA, Natasza Dragovic. During each IOAA, the work of leaders and observers is extremely important, as they not only inspired their students to take up astronomy and astrophysics, but also diligently, day after day, supported participants while translating the olympic tasks into their native languages. I would like to express my special appreciation to the authors of the tasks, who made sure that they were not only difficult, but also interesting and attractive, as well as to the judges - they did a truly great job during the Olympiad. I would like also to thank the employees of the Planetarium - Silesian Science Park, officials of the Silesian Marshal's Office, volunteers and guides of individual teams. Thanks to the involvement of all these people, the event went smoothly. The organization of the 16th International Olympiad on Astronomy and Astrophysics was possible thanks to the support of our Partners: the Ministry of Education and Science of Republic of Poland, the Empiria i Wiedza Foundation, the European City of Science Katowice 2024, the Upper Silesian-Zagłębie Metropolis GZM, and the Copernican Academy. The media patron of the Olympics was the TVP Nauka channel. Thank you very much.

Finally, I would like to thank the person who was the good spirit of this project from the very beginning and supported us from the moment it turned out that it was possible to organize this event. This is the Marshal of the Silesian Voivodeship, Mr. Jakub Chełstowski. Thanks to him, we were able to overcome many obstacles and many doors were opened for us.

I wish all participants and organizers of the 17th International Olympiad in Astronomy and Astrophysics in Brazil the same positive energy and emotions that accompanied us this year in Poland.

International Olympiad on Astronomy and Astrophysics is the biggest event for young astronomers - knowledge enthusiasts who transform their youthful passion into true scientific interest.

In order for these young people to be able to challenge themselves and demonstrate their knowledge and skills, great commitment of mature professionals, astronomers, educators, and their patrons - Leaders are needed. This commitment involves both preparing teams before the competition and intense, hard work during the competition itself. This includes participation in IBM, discussion on the content of tasks, their translations, evaluation of solutions, determining the final results during moderation and adoption of the final ranking. All these tasks, although they remain in the shadow, are crucial to the proper conduct of the Olympiad.

LOC, consisted of employees of the Silesian Planetarium and members of the Main Committee of the Astronomy Olympiad, was responsible for creating a favorable work environment.

Already during the competition, the fast operating Olympiad Office was quickly preparing copies of tasks and scans of solutions, organizing transport and solving simple, everyday problems. In addition, the LOC ensured the smooth running of IBM, giving leaders space to create fair but demanding tasks. The IBM meeting itself ran extremely smoothly in an atmosphere of constructive discourse, thanks to the work of people involved in SOC who prepared the tasks to a very high standard. An extension of the SOC's work was also the large team of judges who reliably assessed several dozen thousand pages of solutions.

We are very proud of the words of the President of the IOAA who appreciated the high level of organization of the competition and the involvement of all people involved in creating this project.

As the organizers of IOAA 2023, we are extremely grateful to all Leaders and Observers for their excellent substantive preparation, great openness and professionalism, which resulted in successful and fruitful cooperation. Thanks to this, we were able to create a competition together that for many young participants was an event they will remember for the rest of their lives.

Damian Jabłeka Deputy Director of Planetarium - Silesian Science Park

Dear Friends,

It was one of the most demanding organizational ventures in the history of the Silesian Planetarium and at the same time an extremely important project in our careers

200 days of daily work. Over 100 hours of talk time. 30 weekly all-day meetings. However, the statistics do not reflect the commitment of the entire team of people involved in the project. The Olympiad in the Silesian Voivodeship has been organized not only thanks to the funds obtained from our partners (although, of course, it would not have been possible to organize it without them), but also thanks to the huge commitment, dedication and daily work of our people. Today we know that our dream has come true.

And we dreamed of 10 successful days of the Olympiad, which would run smoothly.

We looked with joy at the faces of the participants and leaders - we saw new acquaintances and bonds being formed across all divisions, which will surely pay off in the future. The greatest reward for our effort was you smile.

And although the 16th International Olympiad on Astronomy and Astrophysics has become history, we will always remember you.

Paweł Jędrzejczak Administrative Manager of The Silesian Planetarium

"He stopped the sun, moved the earth,
 "And he was the member of the Polish Tribe"

the author of this short poem is unknown, but there is no doubt that this famous epigram is about Nicolaus Copernicus - the "Sarmatian astronomer", as he was described in a letter written by Philip Melanchthon, an outstanding humanist of the time. He called Copernicus's revolutionary theory "madness" ("Some people consider it an outstanding feat when one commits such madness as that Sarmatian astronomer did, who moved the earth and stopped the sun"). However, the science and history agreed with Nicolaus Copernicus, who created the actual model of the Solar System and changed the perception of the world

It is no coincidence that the 16th IOAA was held in the Silesian Planetarium in Chorzów. Its construction started in 1953 during the Copernicus Year. After exactly seventy years, 16th INTERNATIONAL OLYMPIAD ON ASTRONOMY AND ASTROPHYSICS was organized there to emphasize the significance on the 550th anniversary of the astronomer's birth. The year 2023 has been designated by the Senate of the Republic of Poland as the Year of Nicolaus Copernicus.

The anniversary of the birth of Nicolaus Copernicus is an opportunity not only to celebrate and recall the great merits of this outstanding astronomer, but also to remind the international community of the importance of discoveries and this extraordinary scientific revolution in the history of mankind

Like other Renaissance scientists, this outstanding astronomer did more than just make a revolution and "moved the earth". He was also a multi-talented man, full of passion and courage, he was interested in medicine, mathematics, law, cartography, diplomacy, philospohy and even military strategy. He was driven by curiosity about the world. His persistence, determination and perseverance in pursuing the truth helped him make important, breakthrough discoveries.

Let this Copernican attitude be a model for young people, let persistence determination and courage be the basis for actions that - regardless of the results achieved - are the culmination of previous achievements and a reflection of the passion for astronomy.

Artur Górecki,
Director of The Department of General Education and Curriculum at the Ministry of Education and Science.

Górnoślqsko -Zaglębiowska Metropolia

Górnośląsko-Zagłębiowska Metropolia connects places, people and events

Together we can achieve more!
municipalities
and communes (2)

Metropolia supports ideas

We support the ambitions of municipalities and communes in their pursuit of excellence. We subsidise plans and ideas that improve the quality of life of our residents. We focus on sharing good practices in local government and helping our universities to improve. We follow current trends in urban mobility and in the use of unmanned aerial vehicles. We care about efficient communication and modernisation of public transport - we are working on creating the Metropolitan Railway.

Górnosląsko-Zagiębiowska Metropolia surprises visitors with a multitude of diverse attractions - from post-industrial monuments, cultural routes, concerts, exhibitions, performances, to parks, gardens and nature reserves
Visitors can find unique places here, such as the Silesian Park - the largest in Europe, the Industrial Monuments Route - the most interesting industrial tourism route in Poland or the Historic Silver Mine - a UNESCO World Heritage Site.

Metropolia is also home to exceptional cultural events - performances, concerts and major music festivals - from the classic Gorczycki Festival, to Tauron Nowa Muzyka and Off Festival. They attract tens of thousands of fans, from Poland and abroad.

Katowice - European City of Science 2024

Katowice is one of the most dynamically developing cities in the Sile-sian-Dafbrowa agglomeration. In 2022, it was announced as the European City of Science 2024 (EMN2024). The most important task of EMN 2024 is to provide residents with access to knowledge, so that in Katowice and in the other cities across region it is possible to solve everyday problems thanks to the science. The title is the result of the efforts of the city of Katowice and seven universities of the Academic Consortium - Katowice City of Science. The beginning of close cooperation was the organization of the Silesian Science Festival KATOWICE - one of the largest European popular science events.EMN2024 will show the richness of the European scientific landscape, the importance of international research without borders, as well as support for self-education and multi-generational interest in science. The main pillars of EMN 2024 are: events related to the EMN2024 celebrations, scientific excellence and building the infrastructure of the city of science.

Pillars of the European City of Science 2024
$\rightarrow 50$ thematic weeks, during which scientists and residents of the city will be able to talk and cooperate within 50 ideas of the city of science.
\rightarrow Science and scientific excellence - a series of events related to the future of scientific research, the most important of which is the EuroScience Open Forum conference.
\rightarrow Changes in the urban infrastructure and work on the Green Science Zone and the Network Science Center, which are to be the scientific heart of Katowice.

The activities carried out as part of the preparation of the EMN 2024 celebrations are part of 6 thematic paths:
\rightarrow climate and environment,
\rightarrow health and quality of life,
\rightarrow industries of the future,
\rightarrow social innovations,
\rightarrow industrial and cultural heritage
\rightarrow creation and criticism

The celebration of the European City of Science 2024 will show that not only Katowice, but the entire voivodship is undergoing transformation towards modern technologies and a knowledge-based economy

The Copernicus Academy

The Copernicus Academy is a new institution in the system of Polish science. It is an international scientific corporation, which is shown in the most visible way by its following members - half of the researchers are from Poland, and the other half are foreign scientists. It consists of scientists who deal with the same areas of science as Copernicus - astronomy, economics, medicine, law, philosophy and theology.

In February 2023, the Academy organized the 1st World Copernican Congress, where several hundred researchers and guests, including five Nobel Prize winners, participated in discussions and expert panels at the highest level over three days. Only a few months later, at the Royal Castle in Warsaw, the first Copernican Awards in history were awarded, which is a form of Poland's appreciation of the achievements of researchers who push the boundaries of our knowledge of humanity.

Dear,

When Galileo presented the "principle of relativity", it was a denial of the laws formulated by Aristotle that had been cultivated for two thousand years. Despite the pressures associated with promoting a theory that overturned all contemporary knowledge, he put forward a hypothesis that became the foundation of the theory of relativity, quantum theory and almost all modern physics, leading to the creation of, among others, modern media such as radio and television. The insight, persistence and determination that he showed in trying to prove his thesis are the qualities that also led you to this place.
However, no path will take you further if you do not know where you are going. The same law is used when planning the trajectories of space vehicles so that they can safely reach a precisely selected location in the solar system. In an ideal world, it is enough to give the rocket only the right speed, but the classical laws of motion verify how important the interna GPS is.
Openness, internal value map and willingness to challenge the status quo are the system that controls the ferry of your development. I wish you the courage to reach high, question commonly accepted truths and share knowledge. You too - with every observation, bold thesis, you can completely change the way you think about man and his place in the world. Empiria i Wiedza Foundation - established to create the firmament of Pol ish education, discover and develop talents. I hope that the 16th International Olympiad in Astronomy and Astrophysics will be a great opportunity for you to "hold back the Sun and move the Earth", and that it will bring us Polish Nobel Prize winners in the future, which I sincerely wish you

Zuzanna Piasecka

16th IOAA

Organizing Committee

Stefan Janta	Rafał Bączkowicz	Anna Gamon
\rightarrow Director of Planetarium -	\rightarrow Tasks logistics, information	\rightarrow Planetarium staff supporting LOC
Silesian Science Park	technology services in Wisła	
		Ariel Głąb
Damian Jabłeka	Krzysztof Dwornik	\rightarrow Information technology services
\rightarrow Deputy Director of Planetarium -	\rightarrow Tasks logistics	in Chorzów
Silesian Science Park	Aleksandra Chrzan	Michał Pisalnik
	Aleksandra Chrzan	Michat Pisainik
Waldemar Ogłoza	\rightarrow Main Guide	\rightarrow Information technology services
\rightarrow LOC, SOC, Head of IBM, coordinator of tasks preparation	Jolanta Brol	in Chorzów
	\rightarrow Public procurement manager	Agata Sikora
Grzegorz Przybyła		\rightarrow Planetarium staff supporting LOC
\rightarrow IBM Support	Joanna Nowakowska	
	\rightarrow Tasks scanning	Anna Kurowska
Anna Skrzypecka		\rightarrow Planetarium staff supporting LOC
\rightarrow Head of IOAA Office	Bogusława Zagoła	
	\rightarrow Tasks scanning	Patrycja Kajzer
Paweł Jędrzejczak		\rightarrow Planetarium staff supporting LOC
\rightarrow Main Guide	Krystyna Dybek	
	\rightarrow Planetarium staff supporting LOC	Mariola Jurkowska
Michał Rostański		\rightarrow Planetarium staff supporting LOC
\rightarrow Leaders' Main Guide	Michał Błaszkiewicz	
	\rightarrow Head of obervational task	Bożena Gqska
Jarosław Juszkiewicz		\rightarrow Planetarium staff supporting LOC
\rightarrow Newsletter and booklet editor	Katarzyna Matejka	
	\rightarrow Tasks scanning	Marta Karmańska
Ewa Prudło		\rightarrow Planetarium staff supporting LOC
\rightarrow Main acountant	Katarzyna Gajda	
	\rightarrow Tasks Implementation Coordinator	Filip Krawczyk
Agata Spruś		\rightarrow Planetarium staff supporting LOC
\rightarrow Main Guide	Justyna Redczuk	
	\rightarrow Office of IOAA	Anna Moj
Grażyna Salamon		\rightarrow Planetarium staff supporting LOC
\rightarrow Supporting accountant	Daria Pilich	
	\rightarrow Office of IOAA	Piotr Czwordon
Grzegorz Stachowski		\rightarrow Technical services
\rightarrow LOC, SOC, Head of IBM, tasks editor	Agata Chuchra- Konrad	
	\rightarrow IBM Support	Dariusz Katarzyński
	Agata Szkodzińska	\rightarrow Planetarium staff supporting LOC
	\rightarrow Planetarium staff supporting LOC	

Tasks Authors

Judges

Waldemar Ogłoza	Katarzyna Bajan	Janusz Nicewicz
Jerzy Kuczyński	Daniel Błażewicz	Wioletta Ogłoza
Przemysław Mróz	Szymon Cedrowski	Waldemar Ogłoza
Andrzej Sołtan	Maksymilian Celiński	Anna Olchowy
Paweł Rudawy	Jacek Czakański	Artur Paczuski
Zofia Kaczmarek	Bartłomiej Dębski	Bartłomiej Pokrzywko
Tadeusz Firszt	Marek Drożdż	Halina Prętka-Ziomek
Dariusz Graczyk	Filip Ficek	Grzegorz Przybyła
Grzegorz Przybyła	Tadeusz Firszt	Alicaj Pucek
Anna Marciniak	Artur Gawrysiak	Grzegorz Stachowski
Przemysław Żołądek	Dariusz Graczyk	Konrad Szymański
Damian Jabłeka	Karolina Jarosik	Roland Wiśniewski
Grzegorz Stachowski	Zofia Kaczmarek	Anna Wójtowicz
	Mateusz Kapusta	Marcin Wrona
	Grzegorz Kondrat	Joanna Żak
	Oskar Kopczyński	
	Aleksandra Kowalska	
	Jerzy Kuczyński	
	Patryk Liniewicz	
	Piotr Łubis	
	Przemysław Mróz	

Students - participants

 of the 16th IOAA| | Maria Arakelyan | Md Bayezid Bostami | Hongyi Huang | |
| :---: | :---: | :---: | :---: | :---: |
| | Armenia | Bangladesh | Canada | |
| | Areg Barseghyan | Arnob Datta | Zander Li | |
| | Armenia | Bangladesh | Canada | |
| | Artavazd Harutyunyan | Hritom Sarker Oyon | Eleanor Liu | |
| | Armenia | Bangladesh | Canada | |
| | Vyacheslav Petrosyan | Adiba Amira Siddiqa | Tian Pu | |
| | Armenia | Bangladesh | Canada | |
| | Taylan Algan | Murilo De Andrade Porfirio | Debbie Wang | |
| | Austria | Brazil | Canada | |
| | Elias Koschier | Paulo Henrique Dos Santos Silva | Jiahang Chen | |
| | Austria | Brazil | China | |
| | Thomas Riedle | Gabriel Hemetrio De Menezes | Youmo Lai | |
| | Austria | Brazil | China | |
| | Vincent Karl Willis | Mariana Naves Tana | Haiqi Su | |
| | Austria | Brazil | China | |
| | Nijat Abbasov | Paulo Otavio Portela Santana | Boyu Wang | |
| | Azerbaijan | Brazil | China | |
| | Ogtay Latifli | Mihail Bankov | Chen Ziru | |
| | Azerbaijan | Bulgaria | China | |
| $\stackrel{\rightharpoonup}{\text { ® }}$ | Gandab Mammadova | Bayan Gechev | Gabriel Baracaldo Garcia | $\stackrel{\sim}{0}$ |
| $\bar{\square}$ | Azerbaijan | Bulgaria | Colombia | $\stackrel{\text { col }}{ }$ |
| $\stackrel{\sim}{\underline{0}}$ | Nazrin Miriyeva | Konstantin Krastev | Juan Camilo Hernández Clavijo | \bigcirc |
| - | Azerbaijan | Bulgaria | Colombia | $\stackrel{\text { a }}{\stackrel{0}{\overline{0}}}$ |
| $\stackrel{\circ}{\square}$ | Atilla Muradlı | Lora Lukmanova | Juanita Lamprea Carrillo | 4 |
| 合 | Azerbaijan | Bulgaria | Colombia | $\stackrel{\text { O }}{\text { ¢ }}$ |
| - | Adnan Bin Alamgir | Vladimir Milanov | Juan José Sánchez Medina | - |
| N | Bangladesh | Bulgaria | Colombia | ~ |

Marko Ercegović	Matias Navarrete
Croatia	Ecuador
Mihael Lovrić	Zoe Parra
Croatia	Ecuador
Barbara Mustapić	Paolo Suasti
Croatia	Ecuador
Vid Krešimir Pavčnik	Juan Mazariego
Croatia	El Salvador
Viktor Vuković	Luis Antonio Rivera Pérez
Croatia	El Salvador
Kyriakos Dymiotis	Karla Solano
Cyprus	El Salvador
Angel Hadjisoteriou	Violeta Jürgens
Cyprus	Estonia
Ara Mahdessian	Karolin Laud
Cyprus	Estonia
Michalis Platanis	Ralf Robert Paabo
Cyprus	Estonia
Achilleas Thomas	Saskia Põldmaa
Cyprus	Estonia
David Bálek	Minkel Rannut
Czech Republic	Estonia
Jakub Hadač	James Kennedy
Czech Republic	United Kingdom
Martin Kudrna	Ryan Lin
Czech Republic	United Kingdom
Matouš Mišta	Charlotte Stevenson
Czech Republic	United Kingdom
Tomáš Patsch	Frederick Weir
Czech Republic	United Kingdom
Aaron Andrango	Benjamin Woodrow
Ecuador	United Kingdom
Emilio Clavón	Bidzina Gagnidze
Ecuador	Georgia

Andria Manjavidze	Blanka Schmercz
Georgia	Hungary
Dachi Tchotashvili	Gergely Péter Vári
Georgia	Hungary
Luka Tvalavadze	Zahran Nizar Fadhlan
Georgia	Indonesia
Irakli Ugulava	Ferdinand Ferdinand
Georgia	Indonesia
Lasse Paul Blum	Bryan Herdianto
Germany	Indonesia
Maximilian Kirchner	Dzaky Rafiansyah
Germany	Indonesia
Luise Köhler	Indra Rhamadan
Germany	Indonesia
Anton Nüske	Md Sahil Akhtar
Germany	India
Christian Vogel	Tejeswar Koduru
Germany	India
Prodromos Fotiadis	Rajdeep Mishra
Greece	India
Georgios Melistas	Sainavaneet Mukund
Greece	India
Lampros Tegos	Akarsh Raj Sahay
Greece	India
George Tsoumpos	Amir Mahdi Esmaeili Taheri
Greece	Iran
Orestis Zikoulis	Sarina Farzadnasab
Greece	Iran
Dorottya Elekes	Seyed Amir Hossein Moosavifard
Hungary	Iran
Zsóka Horváth	Mahdi Ostadmohammadi
Hungary	Iran
Sándor István Sarkadi	Arvin Rasulzadeh
Hungary	Iran

Rion Fuchigami	Minkyu Song
Japan	South Korea
Haru Hayakawa	Abdullah Algziwi
Japan	Saudi Arabia
Taichi Shimokobe	Ernests Lazdāns
Japan	Latvia
Daiki Tsukahara	Toms Ozoliņš
Japan	Latvia
Yuto Yamada	I! ja Niks Stoligvo
Japan	Latvia
Damir Alenov	Viesturs Streḷčs
Kazakhstan	Latvia
Ualikhan Kylyshbek	Olita Anastasija Zadoroznaja
Kazakhstan	Latvia
Akhmajon Tabarov	Emilijus Latakas
Kazakhstan	Lithuania
Bekassyl Yelubay	Pijus Tydmanas
Kazakhstan	Lithuania
Sunnatov Zanggar	Saulė Vaidelytė
Kazakhstan	Lithuania
Islam Alybaev	Jokūbas Viršilas
Kazakhstan	Lithuania
Taisiia Ri	Rapolas Žygus
Kazakhstan	Lithuania
Sayd Yanshansin	Sunyit Singh A/L Gurdial Singh
Kazakhstan	Malaysia
Sungwon Bae	Jing Chen Loh
South Korea	Malaysia
Dohyun Kwon	Zhi Zheng Ong
South Korea	Malaysia
Hakjin Lee	Zhi Qi Tan
South Korea	Malaysia
Jinwoo Park	Yee Yin Tang
South Korea	Malaysia

Piyush Adhikari	Luis Fabian Sanchez Romero
Nepal	Peru
Kishor Baniya	Joshua Dominicus Lao Tola Castañeda
Nepal	Peru
Ankita Bhattarai	Patrick Gabriel Abeleda
Nepal	Philippines
Sandip Khadka	Mohammad Nur Casib
Nepal	Philippines
Sudip Rokaya	Sean Ken Galanza
Nepal	Philippines
Fredrik Breirem Neumann	Caesar Lopez
Norway	Philippines
Om Saxena	Yanna Lorraine Tenorio
Norway	Philippines
Nataniel Skjøndal - Bar	Gniewosz Armista
Norway	Poland
Ricardo Sonda Guiraudeli	Michał Jagodziński
Norway	Poland
Sigurd Svorkmo - Lundberg	Piotr Jędrzejczyk
Norway	Poland
Eisha Muddassir	Krzysztof Król
Pakistan	Poland
Moiz Muddassir	Maksymilian Wdowiarz - Bilski
Pakistan	Poland
Shirin Mumtaz	Pedro Azóia
Pakistan	Portugal
Ahmed Piracha	Filipa Cabrita
Pakistan	Portugal
Abdullah Umer	Bruno Casanova Ralha
Pakistan	Portugal
Valeria Fernanda Acosta Peña	Madalena Mota
Peru	Portugal
Manuel Mario Nadir Gilvonio Saez	Cátia Silva
Peru	Portugal

Andrei-Darius Dragomir	Aleksa Mikić	Wongwaran Upawong	David Lee
Romania	Serbia	Thailand	USA
Mendel Emanuel Mendelsohn	Mihailo Radovanović	Yiğit Karaca	David Zhang
Romania	Serbia	Türkiye	USA
Ciocârlan Mihai-Bogdan	Janko Stokić	Mehmet Öztürk	Ba Linh Nguyen
Romania	Serbia	Türkiye	Vietnam
Vladimir George Necula	Terézia Hanáková	Egemen Saritekin	Ngoc Phuong Anh Nguyen
Romania	Slovakia	Türkiye	Vietnam
Teofil Voicu	Lukáš Hudák	Tuna Tülümen	The Minh Pham
Romania	Slovakia	Türkiye	Vietnam
Zehan Huang	Ondrej Juhás	Kaan Üstün	Thanh Hai Thai
Singapore	Slovakia	Türkiye	Vietnam
Kane Kiat Leng	Mário Tlamka	Prathit Jindal	Thai Vu Tran
Singapore	Slovakia	United Arab Emirates	Vietnam
Cheng lan Lim	Filip Závadský	Fida Mohammed Shebeaun	
Singapore	Slovakia	United Arab Emirates	
Kai Wen Teo	Teo Alvånger	Naina Verma	
Singapore	Sweden	United Arab Emirates	
Yi Xuan Tong	Ida Grimheden	Illia Garbazhii-Romanchenko	
Singapore	Sweden	Ukraine	
Peter Andolǒsek	Jiachen Mi	Eduard Palant	
Slovenia	Sweden	Ukraine	
Žan Arsov	Alexander Stridh	Viktoriia Voitiuk	
Slovenia	Sweden	Ukraine	
Miha Brvar	Philip Wetterberg	Andrii Zahika	
Slovenia	Sweden	Ukraine	
Žan Ambrožič	Supakorn Paisancharoen	Diana Zazubyk	
Slovenia	Thailand	Ukraine	
Marija Judež	Sutthawish Phonglorpisit	Adhitya Chandra	
Slovenia	Thailand	USA	
Ognjen Janković	Kittiphat Pongarunotai	Austin Chen	
Serbia	Thailand	USA	
Tadija Jelesijević	Phanuphat Srisukhawasu	Evan Kim	
Serbia	Thailand	USA	

Leaders:

Amena Karimyan	Cristian Goez Theran	Nikoloz Tskitishvili
Afghanistan	Colombia	Georgia
Miro Joensuu	Damir Hržina	Jonathan Gräfe
Austria	Croatia	Germany
Abdullah Bazarov	Ivan Romštajn	Ivan Kokhanovskyi
Azerbaijan	Croatia	Germany
Famil Mustafa	George Keliris	Loukas Zacheilas
Azerbaijan	Cyprus	Greece
Ahmad Abdullah Rifat	Ioannis Panagiotou	Georgios Lioutas
Bangladesh	Cyprus	Greece
Fahim Rajit Hossain Shwadhin	Marco Souza De Joode	Gergely Dálya
Bangladesh	Czech Republic	Hungary
Eugenio Reis Neto	Tomas Graf	József Kovács
Brazil	Czech Republic	Hungary
Ualype Uchôa	Daniel Villarruel	Surhud More
Brazil	Ecuador	India
Zahari Donchev	Brisa Terezón	Pritesh Ranadive
Bulgaria	El Salvador	India
Nikola Karavasilev	Kevin Menjívar Ascencio	Mochamad Ikbal Arifyanto
Bulgaria	El Salvador	Indonesia
Vera Zagainova	Richard Luhtaru	Hakim Luthfi Malasan
Canada	Estonia	Indonesia
Armin Hodaei	Leonid Zinatullin	Seyed Mohammad Taghi Mirtorabi
Canada	Estonia	Iran
Zhishuai Ge	Răzvan Mihail Ciurescu	Hoda Pourgholami Markieh
China	France	Iran
Yilin Guo	Giorgi Bakhtadze	Akika Nakamichi
China	Georgia	Japan

Osamu Hashimoto	Iván Daniel Flores Ramos	Kyoung Hee Kim	Badr Almajrathi
Japan	Peru	South Korea	Saudi Arabia
Nurzada Beissen	Bernard Llaguno	Hugo Berg	
Kazakhstan	Philippines	Sweden	
Assel Kenzhetay	Ronn Marr Perez	Benjamin Verbeek	
Kazakhstan	Philippines	Sweden	
Dzharkyn Bapanova	Karolina Bąkowska	Kulapant Pimsamarn	
Kyrgyzstan	Poland	Thailand	
Aleksandra Shumeiko	Tomasz Kisiel	Apimook Watcharangkool	
Kyrgyzstan	Poland	Thailand	
Inese Dudareva	Gustavo Rojas	Sinan Aliş	
Latvia	Portugal	Türkiye	
Dmitrijs Docenko	Craciun Petru	Sinan Kaan Yerli	
Latvia	Romania	Türkiye	
Audrius Bridžius	Cristian Pirghie	Oksana Vernydub	
Lithuania	Romania	Ukraine	
Vidas Dobrovolskas	Vera Prokić	Volodymyr Reshetnyk	
Lithuania	Serbia	Ukraine	
Tian Xiong Chong	Sonja Vidojević	Subramanian Krishnamoorthy	
Malaysia	Serbia	United Arab Emirates	
Yong Sheng Yap	Yi-Lin Leong	Joshua Brown	
Malaysia	Singapore	United Kingdom	
Manisha Dwa	Xiang Hao Yuen	Thomas Hillman	
Nepal	Singapore	United Kingdom	
Suresh Bhattarai	Ladislav Hric	Abhay Bestrapalli	
Nepal	Slovakia	USA	
Thais Mothe-Diniz	Maria Hricová Bartolomejová	Lucas Carrit Delgado Pinheiro	
Norway	Slovakia	USA	
Håkon Dahle	Andrej Guštin	Manh Cuong Le	
Norway	Slovenia	Vietnam	
Abubakar Sial	Dunja Fabjan	Luu Hoa Tran	
Pakistan	Slovenia	Vietnam	
Victor Daniel Vera Cervantes	Seonjae Lee	Talal Alrashidi	
Peru	South Korea	Saudi Arabia	

Observers

Heliomárzio Rodrigues Moreira	Eduard Koči	Lam Son Ha
Brazil	Slovakia	Vietnam
Xin Li	Vid Kavčič	Thi Lam Le
China	Slovenia	Vietnam
Vasilis Vasiliou	Kyung Chul Choi	
Cyprus	South Korea	
David Komanek	Soojong Pak	
Czech Republic	South Korea	
Orpheus Voutiras	Siramas Komonjinda	
Greece	Thailand	
Maria Kontaxi	Parinya Sirimachan	
Greece	Thailand	
Nikolett Vincze	Burcu Çalişkan Kaya	
Hungary	Türkiye	
Zoltán Jäger	Ayşegül Fulya Yelkenci	
Hungary	Türkiye	
Bhaswati Mookerjea	Mahmut Koçin	
India	Türkiye	
Anindya De	Vladyslava Marsakova	
India	Ukraine	
Hossein Haghi	Andrii Simon	
Iran	Ukraine	
Mahdi Ilka	Sofia Vasieva	
Iran	United Kingdom	
Jana Švrčkovä	Alex Calverley	
Slovakia	United Kingdom	

Guides

Kornel Księżak	Weronika Sobień	Agnieszka Gorczaty	Dominik Jezierski-Tratkiewicz
Saudi Arabia	Ecuador	Latvia	Slovakia
Katarzyna Łęgosz	Aleksandra Błaż	Aleksandra Myszor	Jan Pytkowski
Armenia	Estonia	Lithuania	Slovenia
Krzysztof Nadulicz	Anna Jędrusiak	Jerzy Chryc-Gawrychowski	Eliza Kordula
Austria	Philippines	Malaysia	South Korea
Rafał Najda	Kinga Zagdańska-Świtała	Wikotoria Siewierska	Patrycja Filipczyk
Azerbaijan	Germany	Nepal	Sweden
Jakub Kamiński	Adam Dereń	Oliwier Tomczak	Jeremi Kowalski
Bangladesh	Greece	Norway	Thailand
Szymon Obrycki	Jan Frankel	Anna Olechowska	Cezary Krasucki
Brazil	Georgia	Pakistan	Türkiye
Łukasz Wniecki	Piotr Wajda	Małgorzata Matuszek	Anna Olejniczak
Bulgaria	Hungary	Peru	United Kingdom
Natalia Kowalczyk	Paweł Pagacz	Wiktoria Lewandowska	Alisa Chujkina
Canada	India	Poland	Ukraine
Zuzanna Śnioch	Władysław Lewicki	Alicja Wojciech	Igor Odias
China	Indonesia	Portugal	United Arab Emirates
Aleksander Kościuch	Wojciech Kolesiński	Piotr Staroń	Zuzanna Serda
Croatia	Iran	Romania	United States of America
Piotr Zatwarnicki	Zuzanna Szczyrba	Mateusz Nestrowicz	Weronika Michalska
Colombia	Japan	El Salvador	Vietnam
Agnieszka Bajan	Jarowit Śledziński	Jakub Derkowski	Daniel Jaszczak
Cyprus	Kazahstan	Serbia	unasigned
Anna Kutela	Zuzanna Ruchel	Tymoteusz Miciak	
Czech Republic	Kyrgyzstan	Singapore	

Helping volunteers

Justyna Kulawiak

Jarosław Kulej
Łukasz Kmita
Krzysztof Borys
Krzysztof Malordy
Krzysztof Jarzyński
Małgorzata Robak
Paweł Szota
Aleksander Cieszkowski
Sylwia Kubosz
Arkadiusz Simon
Agnieszka Nowak
Roman Wons
Andrzej Nepora
Jarosław Bugaj
Tomasz Pleciak
Damian Grocholski
Adam Lipski
Krystian Kurka
Henryk Lauterbach
Robert Sobczak
Włodzimierz Humeniuk
The organizers of the 16th International Olympiad on Astronomy and Astrophysics would like to especially thank the police head - quarters in Chorzów for their commitment and help in securing planetary tasks

Media Coverage

Paweł Mikołaczyk — PAMEDIA

Piotr Margraf - PAMEDIA

Local Police support

Schedule

Day $1 \rightarrow 10$ th August 2023 Thursday

Arrival to Poland - transfer from the airports/train stations to the hotels. The registration of participants at the hotels.
18.00-23.00 Dinner at the hotel restaurant

Day $2 \rightarrow 11$ th August 2023 Friday
Students
07.30-09.15 Breakfast
09.20
09.30-10.30 Transfer to The International Congress Centre (ICC)
11.00-14.00 16th IOAA Opening Ceremony
14.00-14.15 Handing over of electronic devices and saying goodbye to Team Leaders
14.15-15.15 Transfer to the hotel
15.15-16.30 Lunch
16.30-19.00 Free time and group activites at the hotel
19.00-20.00 Dinner

Team Leaders

07.00-08.30

Breakfast
08.30 Meeting point in the parking lot
08.45-10.45 Transfer to The International Congress Centre (ICC)
11.00-14.00 16th IOAA Opening Ceremony
14.00-14.15 Collecting electronic devices and saying goodbye to Students
14.15-15.00 Lunch at the ICC
15.00-15.20 Transfer to the Silesian Planetarium
15.20-16.30 Planetarium visit
16.30-18.20 Transfer to the hotel
18.30-21.00 IBM. Group competition
21.00-22.00 Dinner
22.00 Translations and printing

Day $3 \rightarrow$ 12th August 2023 Saturday

Students
07.30-09.00 Breakfast
09.00-12.00 Free time and group activities at the hotel
12.00-13.00 Lunch
13.30
13.45-14.45

Transfer to the ICC
15.00-16.30 Group competition
16.30-16.50 Transfer to the Planetarium
17.00-18.15 Planetarium visit
18.30-19.15 Transfer to the hotel
19.30-20.45 Dinner

Team Leaders

08.00-09.00 Breakfast
09.00-13.30 IBM. Theory Round
13.30-14.30 Lunch
14.30-19.30 IBM. Theory Round
19.30-20.30
20.30

Dinner
Translations and printing

Day $4 \rightarrow 13$ th August 2023 Sunday

Students

07.00-08.00 Breakfast
08.00 Meeting point in the parking lot
08.15-09.15 Transfer to the ICC
09.30-15.00 Theory round
15.00-16.00 Transfer to the hotel
16.00-17.30 Lunch
17.30-20.00 Free time, telescopes
19.30-20.30 Dinner

Team Leaders
07.00-09.30 Breakfast
09.30-13.30 IBM. Observation and planetarium round
13.30-14.30 Lunch
14.30-19.30 IBM. Data analysis round
20.00-21.30 Dinner
21.30 Translations and printing

Day $5 \rightarrow$ 14th August 2023 Monday

Students

07.00-08.30 Breakfast
08.30-09.30 Transfer to the ICC (group 1)
09.15-10.15 Transfer to the ICC (group 2)
10.00-10.45 Transfer to the ICC (group 3)
10.45-11.45 Transfer to the ICC (group 4)
11.30-12.30 Transfer to the ICC (group 5)
10.00-15.00 Observation round
12.00-13.00 Transfer to the hotel (group 1)
12.45-13.45 Transfer to the hotel (group 2)
13.30-14.30 Transfer to the hotel (group 3)
14.15-15.15 Transfer to the hotel (group 4)
15.00-16.00 Transfer to the hotel (group 5)
16.00-17.00 Lunch
17.00-19.00 Free time and group activities at the hote
19.00-20.30 Dinner
21.00-23.00 Bonfire and night observation

Team Leaders

07.00-09.30
13.30-14.4
14.45
15.00-15.30 Transfer to the Czantoria Cable Railway
15.30-19.00 Czantoria Cable Railway, hiking, toboggan run, free time
19.15-19.45 Transfer to the hotel
20.00-00.00 Dinner and party

Day $6 \rightarrow$ 15th August 2023 Tuesday

Students

07.30-08.30
08.30
08.45-09.4
10.00-13.00 Data analysis round
13.15-14.15 Transfer to the hotel
14.30-16.00 Lunch
16.00-19.00 Free time and group activities at the hotel
19.00-20.30 Dinner

Team Leaders

07.30-08.45 Breakfas
08.45 Meeting point in the parking lot
09.00-10.30 Transfer to Guido Coal Mine
10.30-15.00 Sightseeing of Guido Mine (lunch during the trip)
15.00-15.30 Transfer to the Planetarium
15.30-17.30 Guided tours in groups
17.30-19.00 Country's sky presentation
19.00-20.30 Transfer to the hotel
21.00-22.00 Dinner

Day $7 \rightarrow 16$ th August 2023 Wednesday

Students

07.00-08.00 Breakfast
08.15-09.15 Transfer to the Planetarium (group 1)
09.00-10.00 Transfer to the Planetarium (group 2)
09.45-10.45 Transfer to the Planetarium (group 3)
10.30-11.30 Transfer to the Planetarium (group 4)
11.15-12.15 Transfer to the Planetarium (group 5)
09.30-14.30 Planetarium round
12.00-16.00 Lunch (each group has lunch after their round)
16.30-19.15 Visiting the Planetarium exhibitions
19.30-20.30 Transfer to the hotel
20.30-21.30 Dinner

Team Leaders
08.00-09.00 Breakfast
09.00-13.00 IBM
13.00-14.00 Lunch
14.00-20.00 Moderation
20.00-21.00 Dinner
21.00-00.00 Night observation/moderation

Day $8 \rightarrow$ 17th August 2023 Thursday

Students

08.00-09.30 Breakfast
08.45-09.15 Transfer to the Ogrodzieniec Castle (group 1 and 2)
10.15-10.45 Transfer to the Ogrodzieniec Castle (group 3 and 4)
11.45-12.15 Transfer to the Ogrodzieniec Castle (group 5 and 6)
09.30-14.15 Guided tour in groups
11.15-11.45 Transfer to the hotel (group 1 and 2)
12.45-13.15 Transfer to the hotel (group 3 and 4)
14.15-14.45 Transfer to the hotel (group 5 and 6)
14.30-15.30 Lunch
15.30-17.00 Free time
17.00-21.00 Cultural evening

Team Leaders

07.30-09.00 Breakfast
08.30-14.30 Moderation
14.00-15.00 Lunch
15.00-17.00 Transfer to student's hotel
17.00-21.00 Cultural evening
21.00-23.00 Transfer to the hotel

Day $9 \rightarrow 18$ th August 2023 Friday

Students

07.00-08.30 Breakfast
08.30 Meeting point in the parking lot
08.45-09.45 Transfer to Guido Coal Mine (group 1)
09.15-10.15 Transfer to Guido Coal Mine (group 2)
09.45-10.45 Transfer to Guido Coal Mine (group 3)
10.00-14.15 Guided tours in groups
13.00-13.30 Transfer to the botanical garden (group 1)
13.45-14.15 Transfer to the botanical garden (group 2)
14.15-14.45 Transfer to the botanical garden (group 3)
13.30-18.00 Group activities in the botanical garden (lunch during a trip)
17.00-18.00 Transfer to the hotel (group 1)
17.30-18.30 Transfer to the hotel (group 2)
18.00-19.00 Transfer to the hotel (group 3)
19.00-20.30 Dinner

Team Leader

07.30-09.00 Breakfast
09.00-15.00 Moderation
15.00-16.30 Lunch
17.00-19.00 Final IBM
19.00-20.00 Dinner
20.00-22.00 Final IBM

Day 10 - 19th August 2023 Saturday

Students

08.00-09.15 Breakfast
09.15
11.00-14.00 Closing Ceremony
14.00-15.15 Lunch at the ICC
15.30-16.30 Transfer to the hotel
16.30-19.00 Free time
19.00-20.30 Dinner

Team Leaders
07.00-08.45 Breakfast
08.45

Meeting point in the parking lot
11.00-14.00 Closing Ceremony
14.00-15.15 Lunch at the ICC
15.30-17.00 Transfer to the hotel
17.00-19.00 Free time
19.00-20.30 Dinner

Day 11 - 20th August 2023 Sunday

Departures - transfer to the airport/train station 07.00—10.00 Breakfast

Tasks

General Marking Scheme

Using incorrect physical concept (despite correct answers) Giving correct answer without detailed calculation

No points given
Deduct 50\% f the marks that part

| Minor mistakes in the calculations, e.g., wrong signs, sym- | $\begin{array}{l}\text { Deduct } 20 \% \text { of the marks for }\end{array}$ |
| :--- | :--- | :--- |
| that | | bols, substitutions that part

Units missing from final answers Deduct 0.5 pts
Too few or too many significant figures in the final answer Deduct 0.5 pts
Error resulting from another error in an earlier part for Full points (i.e., no deduc-
which the student already lost marks, if the answer is tions)
physically reasonable
Error resulting from another error in an earlier part, where
the student should have realised the answer was physically
Deduct 20% of the marks for unreasonable.

For example, if due to an error in an earlier part, the student calculates the mass of a star as $2.5 \times 10^{30} \mathrm{~kg}$ instead of $2 \times 10^{30} \mathrm{~kg}$, they will only lose marks for the earlier part. However, if, for the same reason, a student calculates the mass as $2 \times 10^{25} \mathrm{~kg}$, they should realize this is wrong (a few times the Earth's mass) and thus should lose some marks for this part as well.

Table of Constants
Fundamental constants

Speed of light in vacuum	c	$=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck constant	h	$=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Boltzmann constant	k_{B}	$=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Stefan-Boltzmann constant	σ	$=5.670 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Elementary charge	e	$=1.602 \times 10^{-19} \mathrm{C}$
Universal gravitational constant	G	$=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Universal electric constant	ϵ_{0}	$=8.854 \times 10^{-12} \mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$
Universal gas constant	R	$=8.315 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Avogadro constant	N_{A}	$=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Wien's displacement constant	$b=\lambda_{m} T$	$=2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}$
Mass of electron	m_{e}	$=9.109 \times 10^{-31} \mathrm{~kg}$
Mass of proton	m_{p}	$=1.673 \times 10^{-27} \mathrm{~kg}$
Mass of neutron	m_{n}	$=1.675 \times 10^{-27} \mathrm{~kg}$
Mass of Helium nucleus	m_{He}	$=6.645 \times 10^{-27} \mathrm{~kg}$
Atomic mass unit (a.m.u., Dalton)		$=1.661 \times 10^{-27} \mathrm{~kg}$

Astronomical data			
Hubble constant	H_{0}	$=$	$70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
North Ecliptic Pole (J2000.0)	$\left(\alpha_{\mathrm{E}}, \delta_{\mathrm{E}}\right)$		$\left(18^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{s}},+66^{\circ} 33^{\prime} 39^{\prime \prime}\right)$
North Galactic Pole (J2000.0)	$\left(\alpha_{\mathrm{G}}, \delta_{\mathrm{G}}\right)$		$\left(12^{\mathrm{h}} 51^{\mathrm{m}} 26^{\mathrm{s}},+27^{\circ} 07^{\prime} 42^{\prime \prime}\right)$
1 jansky	1 Jy	=	$10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$
1 parsec	1 pc		$\begin{aligned} & 3.086 \times 10^{16} \mathrm{~m} \\ & 206265 \mathrm{au} \\ & 3.262 \mathrm{ly} \end{aligned}$
1 astronomical unit (au)	1 au	$=$	$1.496 \times 10^{11} \mathrm{~m}$
1 sidereal day	$T_{\text {SD }}$	$=$	$\begin{aligned} & 23.93444 \mathrm{~h} \\ & 23^{\mathrm{h}} 56^{\mathrm{m}} 04^{\mathrm{s}} \end{aligned}$
1 tropical year			365.2422 solar days
1 sidereal year			365.2564 solar days

Gauss's formulae

Spherical law of cosines: $\cos a=\cos b \cos c+\sin b \sin c \cos A$
Spherical law of sines: $\frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c}$

Approximations

$(1+x)^{n} \approx 1+n x$
$(1+x)(1+y) \approx 1+x+y$ if $x \ll 1$ and $y \ll 1$

The Sun

| Solar luminosity | L_{\odot} |
| :--- | :--- |$=3.826 \times 10^{26} \mathrm{~W}$,

Distance of the Sun from the Galactic centre $\quad \approx 8 \mathrm{kpc}$

The Earth and Moon

Obliquity of the ecliptic (Earth)	ϵ
Platonic year (period of precession of Earth's axis)	$=23.5^{\prime}$
Apparent visual magnitude of full Moon	$=25765$ years
Apparent angular diameter of Moon	θ_{L}
Inclination of the lunar orbit to the ecliptic	$=31^{\prime}$
Inclination of the lunar equator to its orbital plane	$=05^{\circ} 08^{\prime} 43^{\prime \prime}$
Lunar sidereal month	$=6.687^{\circ}$
	T_{SL}
	$=27.321661 \mathrm{~d}$
Synodic month	$=255.71986 \mathrm{~h}$
Tropical month	$=29.530589 \mathrm{~d}$
Anomalistic month	$=27.321582 \mathrm{~d}$
Draconic month	$=27.212221 \mathrm{~d}$

The Solar System				
Object	Mean radius $[\mathrm{km}]$	Mass $[\mathrm{kg}]$	Semimajor axis $[\mathrm{au}]$	Eccentricity
Sun	695700	1.988×10^{30}	-	-
Mercury	2440	3.301×10^{23}	0.387	0.206
Venus	6052	4.867×10^{24}	0.723	0.007
Earth	6378	5.972×10^{24}	1.000	0.016710
Moon	1737	7.346×10^{22}	$3.844 \times 10^{5} \mathrm{~km}$	0.054900 (range $0.026-0.077)$
Mars	3390	6.417×10^{23}	1.524	0.093
Jupiter	69911	1.898×10^{27}	5.203	0.048
Saturn	58232	5.683×10^{26}	9.537	0.054
Uranus	25362	8.681×10^{25}	19.189	0.047
Neptune	24622	1.024×10^{26}	30.070	0.009

Group Competition: Instructions

- For this round the participants will be grouped by random selection into 5 -person teams, each representing a named asteroid. Each participant in the group will be from a different country. The selection will take place near the beginning of the IOAA, so that the team members can get to know each other
- Please remember the name and number of your asteroid, as this will also be used to identify your place during the Planetarium and Observation rounds.
- The group competition consists of several tasks, which you will receive in a sealed envelope Each team works together at one table under the supervision of the guides to solve the tasks. You are not allowed to communicate with participants from other teams during the round.
- Dedicated answer sheets are provided for writing your answers. Enter the final answers into the appropriate boxes in the answer sheet (marked A).
- Open the envelopes on the START signal given by the judges. Time is measured from this moment; the winning team will be the one which finishes in the shortest total time, afte any time penalties (for example for incorrect or missing answers) are applied. The time penalties are explained in each task.
- When you have solved all the problems, hand your answer sheets to the guide, who will note the total time.
- The maximum time available for the round is 90 minutes. After this time any remaining answer sheets should be handed in.
- The completed answer sheets will then be marked by the jury, who will apply time penalties as appropriate. The winning team will be announced at the closing ceremony
- Everything you need will be provided on the table (calculator, office supplies, geometrical instruments, paper, table of constants).
- For one of the tasks, all the screens in the room will simultaneously display a video at a specified time (the video will be repeated several times).

For each row of the table in the answer sheet, write in the three-letter IAU abbreviation of the constellation corresponding to the symbol. Your final answer is formed by the vertical column outlined in bold

Hint: Mercator-projection sky map of constellations marked with symbols, below.
Penalties: empty space or wrong constellation: +1 minute

Group Competition 2: 'Reply to Arecibo Message'

During IOAA 2023, a reply to the message sent by the Arecibo radio telescope in 1974 finally reached Earth. A video recording of the transmission will be played on the monitors during the round. Decode the transmission and write the hidden message on the answer sheet.

The recording will begin playing 30 minutes after the start of the competition, and play continuously in a loop for a total of 30 minutes.
Penalties: missing or incorrect answer: +15 minutes

Group Competition 3: 'Mars loop'

(a) On the provided graph paper, plot the X and Y positions of Earth and Mars in the heliocentric system over time using the data from the table, and draw vectors connecting the corresponding positions of Earth and Mars on each day.
(b) Using a ruler and set square, translate each vector to a common origin while preserving their lengths and directions. Connect the ends of the translated vectors with a curve representing the position of Mars in the geocentric system.
(c) From the plot, read off the minimal Earth-Mars distance, the duration of retrograde motion and the angle by which Mars moves backwards. Give your answers on the answer sheet

Penalties: missing or incorrect drawing for part (b) +10 minutes; missing or out of range answers: +5 minutes for each part.

Heliocentric Equatorial Positions				
	EARTH		MARS	
Date	$\mathrm{X}[\mathrm{au}]$	$\mathrm{Y}[\mathrm{au}]$	$\mathrm{X}[\mathrm{au}]$	$\mathrm{Y}[\mathrm{au}]$
2022 Sep 01	0.9375	-0.3431	1.3235	0.4704
2022 Sep 11	0.9846	-0.1928	1.2724	0.5972
2022 Sep 21	1.0033	-0.0370	1.2082	0.7178
2022 Oct 01	0.9928	0.1198	1.1320	0.8312
2022 Oct 11	0.9530	0.2731	1.0448	0.9366
2022 Oct 21	0.8850	0.4184	0.9477	1.0331
2022 Oct 31	0.7905	0.5512	0.8417	1.1200
2022 Nov 10	0.6722	0.6673	0.7282	1.1967
2022 Nov 20	0.5336	0.7631	0.6082	1.2630
2022 Nov 30	0.3785	0.8356	0.4830	1.3184
2022 Dec 10	0.2119	0.8824	0.3537	1.3628
2022 Dec 20	0.0387	0.9020	0.2216	1.3960
2022 Dec 30	-0.1357	0.8936	0.0877	1.4182
2023 Jan 09	-0.3058	0.8574	-0.0468	1.4294
2023 Jan 19	-0.4665	0.7947	-0.1810	1.4297
2023 Jan 29	-0.6128	0.7073	-0.3139	1.4194
2023 Feb 08	-0.7401	0.5981	-0.4445	1.3988
2023 Feb 18	-0.8447	0.4705	-0.5719	1.3682
2023 Feb 28	-0.9234	0.3284	-0.6954	1.3280
2023 Mar 10	-0.9740	0.1765	-0.8140	1.2787
2023 Mar 20	-0.9954	0.0191	-0.9272	1.2207
2023 Mar 30	-0.9868	-0.1387	-1.0341	1.1545
2023 Apr 09	-0.9491	-0.2925	-1.1342	1.0807
2023 Apr 19	-0.8835	-0.4377	-1.2268	0.9998
2023 Apr 29	-0.7920	-0.5702	-1.3115	0.9124

Group Competition 4: 'Southern Pole Star'

On the map of the southern sky in the answer sheet, draw the southern precession circle and determine the year, nearest to the present date, in which the star δ Velorum will become the southern pole star as a result of precession. The map is presented in the equidistant projection.
Penalties: missing or incorrect answer +10 minutes

Group Competition 5: 'Astrolabe'

An astrolabe helps you determine the positions of selected stars relative to the horizon at a given time. The base, or 'mater', is marked with the horizon, curves of constant altitude, the pole tropics, prime vertical and celestial equator (for latitude $50^{\circ} \mathrm{N}$). The two movable transparent parts are the 'rete' and the 'rule'. The 'rete' shows the positions of certain stars, one from each constellation, as seen from outside the celestial sphere, as well as the ecliptic divided into the signs of the Zodiac. Finally the 'rule' is a scale which lets you determine the positions of stars in declination.
(a) Identify the stars marked with letters on the rete and complete the table in the answer sheet. Give the name or Bayer designation and constellation, and the right ascension and declination (within $\pm 0.25 \mathrm{~h}$ and $\pm 5^{\circ}$). Mark the star which was the source of the alien transmission from Task 2.

Penalties: missing or incorrect names or incorrect coordinates: +1 minute each; wrong source star: +1 minute.
(b) For the date of Nicolaus Copernicus's birthday (19 February) determine the right ascension and declination of the Sun (within $\pm 0.25 \mathrm{~h}$ and $\pm 5^{\circ}$), and the times of sunrise and sunset (within $\pm 0.25 \mathrm{~h}$).

Penalties: missing or incorrect coordinates: +5 minutes; missing or incorrect times: +5 minutes.

Group Competition 6: 'Saros’

Use the following table of lunar eclipses from the last 25 years to predict when the next lunar eclipse clearly visible from Poland $\left(50^{\circ} \mathrm{N}, 19^{\circ} \mathrm{E}\right)$ will occur. Give the date and predicted hour on the answer sheet

Penalties: for a missing answer +10 minutes, eclipse with weak visibility +1 minute

Date	Time UT	Type	JD
1991 Dec 21	10:33:60	Partial	2448602.940
1992 Jun 15	04:57:57	Partial	2448788.707
1992 Dec 09	23:45:05	Total	2448966.49
1993 Jun 04	13:01:26	Total	2449143.042
1993 Nov 29	06:27:06	Total	2449320.769
1994 May 25	03:31:20	Partial	2449497.647
1995 Apr 15	12:19:04	Partial	2449823.013
1996 Apr 04	00:10:47	Total	2450177.508
1996 Sep 27	02:55:24	Total	2450353.622
1997 Mar 24	04:40:28	Partial	2450531.694
1997 Sep 16	18:47:42	Total	2450708.283
1999 Jul 28	11:34:46	Partial	2451387.983
2000 Jan 21	04:44:34	Total	2451564.698
2000 Jul 16	13:56:39	Total	2451742.081
2001 Jan 09	20:21:40	Total	2451919.349
2001 Jul 05	14:56:23	Partial	2452096.115
2003 May 16	03:41:13	Total	2452775.653
2003 Nov 09	01:19:38	Total	2452952.556
2004 May 04	20:31:17	Total	2453130.345
2004 Oct 28	03:05:11	Total	2453306.628
2005 Oct 17	12:04:27	Partial	2453661.003
2006 Sep 07	18:52:25	Partial	2453986.286
2007 Mar 03	23:21:59	Total	2454163.474
2007 Aug 28	10:38:27	Total	2454340.943
2008 Feb 21	03:27:09	Total	2454517.644
2008 Aug 16	21:11:12	Partial	2454695.383
2009 Dec 31	19:23:46	Partial	2455197.308
2010 Jun 26	11:39:34	Partial	2455373.986
2010 Dec 21	08:18:04	Total	2455551.846
2011 Jun 15	20:13:43	Total	2455728.343
2011 Dec 10	14:32:56	Total	2455906.106
2012 Jun 04	11:04:20	Partial	2456082.961
2013 Apr 25	20:08:38	Partial	2456408.34
2014 Apr 15	07:46:48	Total	2456762.824
2014 Oct 08	10:55:44	Total	2456938.956
2015 Apr 04	12:01:24	Total	2457117.001
2015 Sep 28	02:48:17	Total	2457293.617
2017 Aug 07	18:21:38	Partial	2457983.265
2018 Jan 31	13:31:00	Total	2458150.063
2018 Jul 27	20:22:54	Total	2458327.349
2019 Jan 21	05:13:27	Total	2458504.717
2019 Jul 16	21:31:55	Partial	2458681.397
2021 May 26	11:19:53	Total	2459360.972
2021 Nov 19	09:04:06	Partial	2459537.878
2022 May 16	04:12:42	Total	2459715.676
2022 Nov 08	11:00:22	Total	2459891.958

Theory: Instructions

- Do not touch envelopes until the start of the examination.
- The theoretical examination lasts for 5 hours and is worth a total of 250 marks.
- There are Answer Sheets for carrying out detailed work and Working Sheets for rough work, which are already marked with your student code and question number
- Use only the answer sheets for a particular question for your answer. Please write only on the printed side of the sheet. Do not use the reverse side. If you have written something on any sheet which you do not want to be evaluated, cross it out.
- Use as many mathematical expressions as you think may help the evaluator to better understand your solutions. The evaluator may not understand your language. If it is necessary to explain something in words, please use short phrases (if possible in English).
- You are not allowed to leave your work desk without permission. If you need any assistance (malfunctioning calculator, need to visit a restroom, etc.), please draw the attention of the supervisor.
- The beginning and end of the examination will be indicated by the supervisor. The remaining time will be displayed on a clock.
- At the end of the examination you must stop writing immediately. Put everything back in the envelope and leave it on the table.
- Once all envelopes are collected, your student guide will escort you out of the examination room
- A list of constants and useful relations are included in the envelope.

Theory 1: 'Neptune'

Given that Neptune will be at opposition on 21 September 2024, calculate in which year Neptune was last at opposition near the time of the northern-hemisphere spring equinox. Assume that the orbits of Earth and Neptune are circular.
(5 points)

Theory 2: 'Magnetic field'

An emission line of wavelength $\lambda=600 \mathrm{~nm}$ was observed in the spectrum of a white dwarf. Assuming that it originates from the interaction of a free non-relativistic electron with a magnetic field,
(a) calculate the magnetic flux density of the field;
(b) estimate the wavelength of another spectral line, the discovery of which could confirm that the lines originate from particles of a plasma interacting with the magnetic field.
(5 points)

Theory 3: 'Microlensing'

A faint subdwarf star $(I=20.4 \mathrm{mag})$ in the Galactic bulge was observed to brighten to $I^{\prime}=$ 15.2 mag as a result of gravitational microlensing, allowing a high-resolution spectrum to be obtained with the UVES spectrograph on the Very Large Telescope (mirror diameter 8.2 m).

Estimate the diameter of the telescope needed to obtain a spectrum of the same quality with the same instrument and exposure time for this star at its normal apparent brightness. The fiber aperture is small enough so that the sky background is negligible.
(5 points)

Theory 4: 'Europa'

(a) Assuming that the ice covering the ocean on Jupiter's moon Europa is 6 km thick, that the surface temperature on the night side of Europa is 100 K and that the temperature at the ice-water boundary is 273 K , calculate the total power corresponding to the heat emitted from the interior of this moon.
(b) On Earth, the mean geothermal heat flux measured at the continental surface is $70 \times$ $10^{-3} \mathrm{Wm}^{-2}$ and originates mainly from radioactive decay. Is the heat emanating from the interior of Europa more likely to come from radioactive decay or tidal forces? Assume that Earth and Europa have a similar isotopic composition. (Select the correct answer on the answer sheet and show your working.)
(10 points)

Notes: the heat passing through a wall with a surface area S and thickness d in time t is described by the formula:

$$
Q=\lambda S \Delta T t / d
$$

where λ stands for thermal conductivity and ΔT for the temperature difference.
The thermal conductivity of ice $\lambda=3 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. The mass and radius of Europa are $4.8 \times$ $10^{22} \mathrm{~kg}$ and 1561 km .

Theory 5: 'Dark Energy'

Observations indicate that the expansion of the Universe is accelerating. Fluctuations of the cosmic microwave background favour a flat (Euclidean) geometry, in which the total mass density (i.e. density of matter and equivalent mass density of all forms of energy) should be equal to the so-called critical density:

$$
\rho_{\mathrm{cr}}=\frac{3 H_{0}^{2}}{8 \pi G},
$$

where H_{0} is the present value of the Hubble constant. However, the total density of matter (luminous and dark) is estimated at

$$
\rho_{\mathrm{m}, 0} \approx 2.8 \cdot 10^{-27} \mathrm{~kg} \mathrm{~m}^{-3}
$$

To resolve this discrepancy, the standard cosmological model assumes that the Universe is filled with a mysterious 'dark energy' of constant energy density ε_{Λ}.

Determine the value of ε_{Λ} and calculate for which redshift in the past the energy density equivalent to matter was equal to the density of dark energy. Neglect the contribution of electromagnetic radiation.
(12 points)

Theory 6: 'Bolometer'

The entrance cavity of a particular bolometer is a cone with an opening angle of 30°, the surface of which has an energy absorption coefficient of $a=0.99$. Assume that there is no scattering of the incident radiation on the walls of the cavity, only multiple mirror-like (specular) reflections. The bolometer is connected to a cooler which keeps the bolometer cavity surface at practically 0 K temperature. The instrument is orbiting at 2 au from the Sun and is pointed directly at the centre of the Solar disk.
Calculate the temperature of a black body which would radiate the same amount of energy from a unit surface area as the bolometer opening does per unit surface area.
Note: the opening angle is defined as twice the angle between the axis of the cone and its generatrix.
(13 points)

Theory 7: 'Libration'

As a result of libration, studied among others by Johannes Hevelius, more than half of the Moon's surface can be observed from Earth. Assume that the observer is geocentric.
(a) Estimate ϕ_{B}, the maximum angle of libration in latitude. The axial tilt (obliquity) of the Moon with respect to its orbital plane is $\alpha=6^{\circ} 41^{\prime}$
(b) Estimate ϕ_{L}, the maximum angle of libration in longitude. Assume that the Moon is always aligned with the same side facing towards the second focus F2 of its orbit, and that the eccentricity of the Moon's orbit e changes between 0.044 and 0.064 on a timescale of several months.
(c) Estimate the fraction of the Moon's surface which can be seen from Earth.
(d) Calculate how many months (lunations) are needed for an observer to see the Moon's surface determined in part (c)
(20 points)

Theory 8: 'Neutrinos'

In a simplified model of a supernova explosion, the core of a star, composed of pure iron ${ }_{26}^{56} \mathrm{Fe}$ nuclei with a total mass of $1 M_{\odot}$, changes into a neutron star composed of individual electrons, protons and neutrons in numerical proportions of $1: 1: 8$. This process is called 'neutronization' and results in the emission of a large number of neutrinos.

Calculate the solar neutrino flux on Earth. How much larger would the flux of neutrinos reaching the Earth from the supernova be than the steady neutrino emission of the Sun, if the supernova exploded in the centre of the Galaxy and the process of neutronization of the core took about 0.01 s? Give an order-of-magnitude answer.
(20 points)

Theory 9: 'Second eclipse'

For each of two eclipsing binary systems, Bolek and Lolek, the primary eclipses were observed with very high cadence as depicted below:

Figure 1: Observed lightcurve for system Bolek

Figure 2: Observed lightcurve for system Lolek.

In the figures, t is the time in hours relative to the moment of minimum and V is the brightness in the V (visible) band in magnitudes. The points are the measurements and the line is the fitted model of the shape of the eclipse.

You can assume that in both cases the eclipses are central $\left(i=90^{\circ}\right)$ and last for a very small fraction of the orbital period, limb darkening is negligible, and the orbits have low eccentricity.

On the Answer Sheet, draw the predicted shape of the light curve for each of the secondary eclipses. Write down the equations and calculations leading to your predictions.
(20 points)

Theory 10: 'Aldebaran'

On 9 March 1497, Nicolaus Copernicus observed the occultation of Aldebaran by the Moon from Bologna. In his work De revolutionibus orbium coelestium (Book VI, Chapter 27) Copernicus described the event: "I saw the star touching the dark edge of the Moon and disappearing at the end of the 5th hour of the night between the horns of the Moon, closer to the south horn by a third of the Moon's diameter."

Assuming that the occultation was observed on the local meridian, that at maximum occultation Aldebaran was 0.32^{\prime} above the southern edge of the Moon, and that the apparent angular diameter of the Moon as seen from Bologna was 31.5^{\prime}, solve the following tasks:
(a) Find the latitude φ_{1} of a place with the same longitude as Bologna, from which Aldebaran would have appeared to pass behind the centre of the Moon.
(b) Find the duration of the occultation as seen from latitude φ_{1} if Aldebaran appeared to pass along the diameter of the lunar disk. For simplicity, also assume that the Moon and the observer are moving linearly at constant speed, that the Moon's orbit is circular and that the declination of the Moon does not change during the occultation.
(c) Find the topocentric angular velocity of the Moon against the background stars during the occultation for an observer at latitude φ_{1}, in arcmin/hour, applying the same assumptions as in part (b).
(d) Estimate the range of the Moon's topocentric angular velocities (against the background stars) in arcmin/hour at latitude φ_{1}, assuming a circular orbit. Show how this result can be justified by expressing the relative velocity of the Moon and observer in terms of their velocity vectors.

The declination of Aldebaran was $\delta_{\mathrm{A}}=15.37^{\circ}$ in 1497 (due to precession), and the latitude of Bologna is $\varphi_{\mathrm{B}}=44.44^{\circ} \mathrm{N}$.

Theory 11: 'X-ray emission from galaxy clusters'

Clusters of galaxies are strong X-ray sources. It has been established that the emission mech anism is thermal bremsstrahlung (free-free radiation) from a hot hydrogen and helium plasma inside the cluster. The luminosity L_{X} (in Watts) of each component of the plasma is described by the formula:

$$
L_{X}=6 \times 10^{-41} N_{e} N_{X} T^{\frac{1}{2}} V Z_{X}^{2}
$$

where the symbols represent:
X - Hydrogen (H) or Helium (He),
$N_{e}-$ number density of electrons $\left[\mathrm{m}^{-3}\right]$,
$N_{X}-$ number density of ions $X\left[\mathrm{~m}^{-3}\right]$,
Z_{X} - atomic number of ion X,
T - temperature of the plasma $[\mathrm{K}]$,
V - volume occupied by the plasma $\left[\mathrm{m}^{3}\right]$.
(a) Determine the total mass (in solar masses) of the plasma which emits the X-rays, assuming that:

- the plasma is fully ionized with 1 helium ion for every 10 hydrogen ions;
- $L_{\text {total }}=1.0 \times 10^{37} \mathrm{~W}$,
- $T=80 \times 10^{6} \mathrm{~K}$,
- the plasma is uniformly distributed in a sphere of radius $R=500 \mathrm{kpc}$,
- self-absorption is negligible.

The photons of the cosmic microwave background (CMB) interact with plasma in a process known as inverse Compton scattering. The CMB normally has a thermal blackbody spectrum at a temperature of 2.73 K . However, interaction with the plasma leads to distortion of the CMB spectrum (known as the Sunyaev-Zeldovich effect).
(b) Estimate the mean free path of CMB photons in the plasma, i.e. the average distance travelled by a photon before interacting with an electron. Express it in Mpc. The effective cross section for photon-electron interactions is $\sigma=6.65 \times 10^{-29} \mathrm{~m}^{2}$.
(c) Estimate the typical energy of CMB photons.
(d) The energy of CMB photons can be increased by a factor of up to $(1+\beta) /(1-\beta)$ due to the inverse Compton scattering, where $v=\beta c$ is the velocity of electrons. Estimate the energy of scattered CMB photons.

Theory 12: 'DART

The Double Asteroid Redirection Test (DART) was a NASA mission to evaluate a method of planetary defense against near-Earth objects. The spacecraft hit Dimorphos, a moon of the asteroid Didymos, to study how the impact affected its orbit.
(a) Calculate the expected orbital period change (in minutes), assuming that the collision was head-on, central, and perfectly inelastic.
Assume that before the impact Dimorphos orbited Didymos on a circular orbit with a period of $P=11.92 \mathrm{~h}$. The masses of Dimorphos and Didymos are $m=4.3 \times 10^{9} \mathrm{~kg}$ and $M=5.6 \times 10^{11} \mathrm{~kg}$, respectively. The mass and speed of the DART spacecraft relative to Dimorphos at a moment of impact were $m_{\mathrm{s}}=580 \mathrm{~kg}$ and $v_{\mathrm{s}}=6.1 \mathrm{~km} \mathrm{~s}^{-1}$. Neglect the gravitational influence of other bodies.
(20 points)
(b) In reality, the orbital period of Dimorphos was observed to be changed by $\Delta P_{0}=-33 \mathrm{~min}$. This is due to the momentum transfer associated with the recoil of the ejected debris: the spacecraft was absorbed by the asteroid, but the impact excavated some material from the asteroid and ejected it into space. Calculate the momentum of the ejected debris and express it as a fraction of the momentum of Dimorphos before the collision. You can assume that the mass of the ejected material is much smaller than the mass of Dimorphos.
(15 points)
(c) Calculate the velocity change (in $\mathrm{mm} \mathrm{s}^{-1}$) of Dimorphos as a result of the impact, taking into account the effect of the ejected debris.
(Total: 40 points)

Theory 13: 'LISA'

The Laser Interferometer Space Antenna (LISA) is a proposed experiment to detect low-frequency gravitational waves. It consists of three spacecraft arranged in an equilateral triangle. A passing gravitational waves. It consists of three spacecraft arranged in an equilateral triangle. A passing
gravitational wave changes the distance between the spacecraft, which can be precisely measured (more details are given in the notes below)
One of the sources of low-frequency gravitational waves are compact binary star systems, for example binary white dwarfs. Such a system was recently discovered at a distance of 2.34 kpc from the Sun. The orbital period of the binary was found to be 414.79 s and is changing at a rate of $-7.49 \times 10^{-4} \mathrm{~s} \mathrm{yr}^{-1}$ due to the emission of gravitational waves.
(a) Check if this binary system can be detected by LISA.
(b) Calculate the chirp mass.
(c) Determine the masses of both components knowing that the ratio between the radius of one of the components to the semi-major axis of the orbit is 0.139 , and assuming both components follow the mass-radius relation for white dwarfs given in the table below.
(15 points)
(Total: 45 points)

Notes:

1. A binary star system with an orbital period P emits gravitational waves with a frequency of $f=2 / P$.
2. LISA measures a dimensionless quantity called the characteristic strain amplitude, S, given by

$$
S=h \sqrt{f T_{\mathrm{obs}}},
$$

where $T_{\text {obs }}=4 \mathrm{yr}$ is the expected duration of the mission. h is the gravitational wave strain, given by:

$$
h=\frac{2(G \mathcal{M})^{5 / 3}(\pi f)^{2 / 3}}{c^{4} D}
$$

where \mathcal{M} is the so-called chirp mass, f is the frequency of the gravitational wave and D is the distance to the system. If we denote the masses of the components of the binary as M_{1} and M_{2}, then the chirp mass is given by:

$$
\mathcal{M}=\frac{\left(M_{1} M_{2}\right)^{3 / 5}}{\left(M_{1}+M_{2}\right)^{1 / 5}} .
$$

The expected sensitivity of LISA as a function of a gravitational wave frequency is presented on the figure below.
3. The semi-major axis a of the binary system changes due to the emission of gravitational waves at a rate:

$$
\frac{\Delta a}{\Delta t}=-\frac{64}{5} \frac{G^{3}}{c^{5}} \frac{M_{1} M_{2}\left(M_{1}+M_{2}\right)}{a^{3}}
$$

$M\left(M_{\odot}\right)$	$R\left(R_{\odot}\right)$
0.48	0.0144
0.50	0.0147
0.52	0.0150
0.54	0.0153
0.56	0.0156
0.58	0.0159
0.60	0.0162
0.62	0.0165
0.64	0.0168

Mass-radius relation for white dwarfs based on theoretical models of Althaus et al. (2013) for white dwarfs of $\log _{q}=7.7$.

Observation Round: Procedure

You have 30 minutes to read the questions and plan your observations. Do not talk to other participants. When you are shown the sign to 'GO NOW' by the supervisor, follow the directions to the telescope location taking with you the questions, clipboard and pen/pencil (a red light will be provided at the telescope). Keep your distance from other participants and do not talk to them. Show your badge and code to the assistant at your telescope.
You will have a total of 30 minutes to complete the observing tasks, starting when all participants are ready. At the end of 30 minutes take your papers and clipboard (leave the light) and wait until called to leave the observing location.

Follow the directions back to the preparation hall. Keep your distance from other participants and do not talk to them.
You will have another 30 minutes to process your observations and complete the answer sheet (there will be a calculator, geometrical instruments etc.). If you had any technical problems you can write a report for your team leader on the form in the answer sheets. At the end of 30 minutes place your answer sheets and the report in the envelope and wait at your desk until directed to leave the hall

Observation Round: General Instructions

Scientists have discovered a crashed alien flying saucer. High up inside the hold, they found several screens transmitting views of the sky and telescopes have been set up to let you see them clearly from the level of the deck. Use your telescope to observe the (simulated) targets on the screens and record your results.

There are 5 screens on the opposite side: the central one will display video for tasks 1 and 2 , the other four will display static images for tasks 3 and 4. The two screens closer to the centre wil display the (same) image for task 3 , and the two outer screens will display the (same) image for task 4. Point your telescope at the screens furthest away from you.

1,2 3

You will have a total of 30 minutes to complete the observing tasks, however tasks 1 and 2 will only be displayed once: just as with real observations you will only have one opportunity to collect the data. There will be two clocks visible showing the time remaining in the round.
At the start of the round a clock on the central screen will show the simulated time at the observer's location. The clock will have the correct orientation when seen through the telescope. The time will be shown for 3 minutes after which it will disappear; use this to set a start time for your observations.

Caution: the scale of the field of view is different between the video and still images

Observation: Map 1 (Question 1 and Question 2)

Observation 1: 'Asteroid occultation

Calculations based on the orbital elements predict that an asteroid will occult the star HD 163390 for 21 s , with the maximum occultation (mid-time) occurring at 23:03:32 UT. However, the ephemeris is not perfect and the prediction may be wrong by up to 20 s for the time and by 10 s for the duration

Based on your observations, find the true mid-time and duration of the occultation. To identify the star use Map 1 and the following coordinates:

HD 163390 RA: $17^{\mathrm{h}} 58^{\mathrm{m}} 05^{\mathrm{s}}$ DEC: $-18^{\circ} 50^{\prime} 46.14^{\prime \prime}$
The map and the sky are in the same epoch.
(15 points)

Answer Sheet

Mid-time of occultation	\pm error	Duration of occultation	\pm error

Observation 2: 'Starlink'

In the same star field as for Question 1, a 'train' of Starlink satellites will appear near the meridian of $17^{\mathrm{h}} 59^{\mathrm{m}}$ at around 23:05 UT. Their passage will last for around three minutes.

You may assume that the centre of the star field is at an altitude of 20° and that the satellites are 400 km above the Earth's surface moving on circular orbits with equal distances between them. You may also assume that satellites will move vertically (perpendicular to the horizon).
(a) Measure the angular velocity of the satellites as seen by an observer on the simulated sky.
(b) Measure the time interval between the passes of successive satellites and mark their path on the sky chart (Map 1)
(c) Calculate the theoretical angular velocity of the satellites as seen by the observer, using the information given in the question.
(d) Estimate the distance in km between two consecutive satellites.

Constants: $G=6.674 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} ; M_{\text {Earth }}=5.972 \times 10^{24} \mathrm{~kg} ; R_{\text {Earth }}=6378 \mathrm{~km}$.
15 points)

Observation 3: 'Planetary Moons'

The screen will display an image of one of the planets of the Solar System as seen on August 15,2023 , at 00:00 UT. Identify any five moons and mark them on the answer sheet (you may use the moon position chart attached below and the table showing their brightness).
(10 points)

The moon position chart. The numbers on the left indicate the days of August 2023 (at midnight UT).

Number	Name	Magnitude
I	Mimas	13.0
II	Enceladus	11.8
III	Tethys	10.4
IV	Dione	10.6
V	Rhea	9.9
VI	Titan	8.5
VII	Hyperion	14.4
VIII	Japetus	11.0

The moon position chart - moon numbers (I, II, ...) as above.

Answer sheet

Mark the positions of any 5 moons with a dot on the following image and label them with their numbers ($1, \Pi, \ldots$).

Observation 4: 'Supernova'

The other screen presents the view of a galaxy and a bright (mag <11) object which was not visible previously. Estimate the right ascension (RA) and declination (DEC) coordinates of this star and estimate its magnitude. You may use Map 2, with stellar coordinates and a list of magnitudes.
(10 points)

Star	RA 12000			DEC J2000			mag
	h	m	8	deg	m	5	
80+69541	9	55	2.7	68	56	22	10.3715
Gaia DR2 1070097015969962560	9	53	27.9	68	58	43	11.2281
Gaia DR2 107014432932906956\%	9	53	17.7	69	2	48	10.0785
Gain DR2 1070453463896461952	9	57	0.8	68	54	6	8.9148
Gaia DR2 1070455010084791680	9	55	25.9	68	51	21	11.4722
Gaio DR2 1070459408131196776	9	58	1.6	68	57	24	10.2003
Gaia DR2 1070467070352960512	9	55	4.4	68	54	5	9.1615
Gaia DR2 1070467379590606976	9	55	1	68	56	22	10.4605
Gaia DR2 1070468169864590208	9	54	45.3	68	56	59	12.2097
Gain DR2 1070469475534553728	9	55	41.4	69	0	30	11.7856
Gaia DR2 1070470265808536448	9	55	45	69	1	48.	11.2905
Gaio DR2 1070470509404512512	9	55	332	69	3	55	13.3020
Gaia DR2 1070472293033168640	9	54	532	69	3	48	14.2845
Gaia DR2 1070473186386370176	9	54	42.3	69	5	52	11.6033
Gaia DR2 1070476794158817152	9	57	38.8	69	10	44	12.6348
Gain DR2 1070476858581360384	9	56	47.1	69	7	27	12.7259
Gaia DR2 1070476597238038272	9	56	34.4	69	7	51	13.6578
Gaia DR2 1070477240835421440	9	56	44.8	69	9	1	13.7626
Gaia DR2 1070477305257957888	9	56	45.1	69	10	1	11.4495
Gaia DR2 1070522934990509312	9	55	15.4	69	15	19	12.0436
Gaia DR2 1070523111086221568	9	54	28.6	69	13	22	11.0704
HDA5458	9	55	4	68	54	6	91615

Answer Sheet

Right ascension Declination 2 est. magnitude

Observation: Map 2

Data Analysis: Instructions

- Do not touch envelopes until the start of the examination.
- The data analysis examination lasts for 3 hours and is worth a total of 125 marks.
- There are Answer Sheets for carrying out detailed work and Working Sheets for rough work, which are already marked with your student code and question number.
- Use only the answer sheets for a particular question for your answer. Please write only on the printed side of the sheet. Do not use the reverse side. If you have written something on any sheet which you do not want to be evaluated, cross it out.
- Use as many mathematical expressions as you think may help the evaluator to better understand your solutions. The evaluator may not understand your language. If it is necessary to explain something in words, please use short phrases (if possible in English).
- You are not allowed to leave your work desk without permission. If you need any assistance (malfunctioning calculator, need to visit a restroom, etc.), please draw the attention of the supervisor.
- The beginning and end of the examination will be indicated by the supervisor. The remaining time will be displayed on a clock.
- At the end of the examination you must stop writing immediately. Put everything back in the envelope and leave it on the table.
- Once all envelopes are collected, your student guide will escort you out of the examination room.
- A list of constants and useful relations are included in the envelope.

Data Analysis 1: 'Distance to the Large Magellanic Cloud'

In 2019 an international collaboration led by Polish astronomers measured, with very high precision and accuracy, the distance to the Large Magellanic Cloud (LMC), a satellite galaxy of the Milky Way. In this way they set the zero point of the extragalactic distance scale, which allowed for a very precise measurement of the Hubble constant. Their method involved measuring the distances to 20 eclipsing binary stars in the LMC, using the concept of the surface brightness S_{V} of a star defined as:

$$
S_{V}=m_{V}+5 \log _{10} \theta
$$

where m_{V} is the magnitude of a star in the optical V band and θ is the angular diameter of the star on the sky in milliarcseconds (mas)
The quantity S_{V} can be understood as the magnitude of a star with an angular diameter of 1 mas. An empirical relation has been established between S_{V} and the colour index $\left(m_{V}-m_{K}\right)$, where m_{V} and m_{K} are magnitudes in the V-band and infrared K-band. This is shown in the figure below for giant stars of spectral types G and K

Using this relation, the distance to an eclipsing binary system can be determined by deriving the physical radii of the components (using photometry and spectroscopy), and comparing these with the angular diameters predicted by the $S_{V}-\left(m_{V}-m_{K}\right)$ relation.

The table below gives the parameters of three detached eclipsing binary stars. R_{1} and R_{2} are the radii of each component, V_{1+2} and K_{1+2} are the total brightness in magnitudes of the binary in the V - and K-bands, and L_{2} / L_{1} is the luminosity ratio of the components in each band.

source ID	$\boldsymbol{R}_{\mathbf{1}}\left[\boldsymbol{R}_{\odot}\right]$	$\boldsymbol{R}_{\mathbf{2}}\left[\boldsymbol{R}_{\odot}\right]$	$\boldsymbol{V}_{\mathbf{1 + 2}}[\mathbf{m a g}]$	$\boldsymbol{K}_{\mathbf{1 + 2}}[\mathbf{m a g}]$	$\boldsymbol{L}_{\mathbf{2}} / \boldsymbol{L}_{\mathbf{1}}(\boldsymbol{V})$	$\boldsymbol{L}_{\mathbf{2}} / \boldsymbol{L}_{\mathbf{1}}(\boldsymbol{K})$
OGLE LMC-ECL-03160	17.03	37.42	16.73	14.10	2.80	4.23
OGLE LMC-ECL-10567	24.60	36.64	16.15	13.83	1.41	1.99
OGLE LMC-ECL-18365	37.30	15.94	16.27	14.01	0.206	0.188

Apply the method outlined above to the three eclipsing binary systems and calculate the distance to the LMC in kiloparsecs. Estimate the total error of the result. Assume that the fitting of the $S_{V}-\left(m_{V}-m_{K}\right)$ relation contributes to a bias of up to 0.8% in all measurements simultaneously.

(Total: 50 points)

Hint: in your calculations keep at least three significant figures and two decimal places. Assume that interstellar extinction is negligible and that the angular size of the LMC is small.

Data Analysis 2: 'Isolated black hole'

In 2022, two independent groups reported the discovery of an isolated black hole based on observations of the gravitational microlensing event OGLE-2011-BLG-0462. In this problem, we will analyze data from the Hubble Space Telescope to reproduce their findings.

Gravitational microlensing occurs when the light of a distant star (the 'source') is bent and magnified by the gravitational field of an intervening object (the 'lens'). The characteristic angular scale of gravitational microlensing events, called the angular Einstein radius θ_{E}, depends on the mass M and distance D_{ℓ} from the Earth to the lens:

$$
\theta_{\mathrm{E}}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{s}-D_{\ell}}{D_{s} D_{\ell}}},
$$

where D_{s} is the distance to the source star. For typical microlensing events observed in the Milky Way, the source stars are in the Galactic bulge, near the Galactic center, so $D_{s} \approx 8 \mathrm{kpc}$.
(a) Calculate the angular Einstein radius in milliarcseconds (mas) for an example lens of $1 M_{\odot}$ located at a distance of 1 kpc .
(2 points)
Suppose that at time t the lens and the source are separated by an angle $\theta \equiv u(t) \theta_{\mathrm{E}}$ on the sky. Two images of the source are created on a line through the positions of the source and the lens, at angular distances θ_{+}and θ_{-}from the lens given by:

$$
\theta_{ \pm}=\frac{1}{2}\left(u \pm \sqrt{u^{2}+4}\right) \theta_{\mathrm{E}} .
$$

These two images are magnified, relative to the unlensed brightness of the source. The absolute magnification of the images is:

$$
A_{ \pm}=\frac{1}{2}\left(\frac{u^{2}+2}{u \sqrt{u^{2}+4}} \pm 1\right) .
$$

The image below shows the geometry of the event. The position of the lens is marked as L, the unlensed position of the source is marked as S, while A_{+}and A_{-}mark the positions of the two images of the source. The dashed circle has a radius of one Einstein radius.

(b) Current telescopes cannot normally resolve this pair of images, but only measure the position of the image centroid, i.e. the brightness-weighted mean of the positions of the wo images. Derive an expression for the angular separation θ_{c} of the image centroid relative to the lens as a function of u and θ_{E}.
(c) Derive an expression for the source deflection $\Delta \theta$, i.e. the difference between the location of the centroid and the unlensed position of the source, as a function of u and θ_{E}. What is the source deflection when the lens and the source are nearly perfectly aligned $(u \approx 0)$?

(4 points)

The source and lens are moving relative to each other in the sky. Thus, both the total magnifi cation of the images and the position of the centroid changes with time, resulting in observable photometric and astrometric microlensing effects. For now, we assume that the source-lens relative motion is rectilinear.
The plot below shows the light curve of the gravitational microlensing event OGLE-2011-BLG 0462, discovered by the OGLE sky survey led by astronomers from the University of Warsaw The solid line shows the best-fitting light curve model. The Einstein timescale of the event, i.e. the time needed for the source to move by one angular Einstein radius relative to the lens, was $t_{\mathrm{E}}=247$ days. The event peaked on 21 July 2011 (HJD $=2455763$). The minimal separation between the lens and the source was $u_{0} \approx 0$.

The table below shows the measured positions of the source star against the background objects in the East and North directions based on images from the Hubble Space Telescope.

HJD	E position (mas)	N position (mas)
2455765.2	2.58 ± 0.13	7.29 ± 0.16
2455865.7	2.32 ± 0.12	5.44 ± 0.24
2456179.7	0.46 ± 0.14	1.62 ± 0.08
2456195.8	0.88 ± 0.36	1.56 ± 0.77
2456426.2	-1.02 ± 0.21	-0.94 ± 0.12
2456587.7	-2.04 ± 0.07	-1.88 ± 0.40
2456956.6	-4.54 ± 0.25	-5.16 ± 0.29
2457995.2	-11.14 ± 0.12	-15.14 ± 0.17

(d) Plot the measured positions of the source star against the background objects in the East and North directions as a function of time.
(10 points)
(e) The observed motion of the source star is the sum of two effects: rectilinear proper motion of the source and astrometric microlensing effects. Calculate the proper motion (in mas/year) of the source in the East and North directions and its uncertainty. (8 points)
(f) After subtracting the effects of proper motion from the data, calculate and plot the total resultant astrometric deflection as a function of u. Neglect the uncertainty of the proper motion determination.
(20 points)
(g) Analyse the data to determine the angular Einstein radius θ_{E} of the event and its uncertainty. (Hint: it may be helpful to linearise the expression for $\Delta \theta$).
(16 points)
(h) For long-timescale events such as OGLE-2011-BLG-0462, the rectilinear approximation of the relative lens-source proper motion is not strictly true and the orbital motion of the Earth has to be taken into account. This allows measurement of a dimensionless quantity called the microlensing parallax, defined as $\pi_{\mathrm{E}}=\left(\pi_{l}-\pi_{s}\right) / \theta_{\mathrm{E}}$, where π_{l} and π_{s} are parallaxes of the lens and the source, respectively.

For this event $\pi_{\mathrm{E}}=0.095 \pm 0.009$. Rearrange the expression for θ_{E} given earlier to calculate the mass of the lens in solar masses and its uncertainty.
(7 points)
(Total: 75 points)

Planetarium Round: Procedure

You will have 30 minutes to read the questions and prepare, 30 minutes inside the planetarium and 30 minutes to process your observations and complete the answer sheet

The preparation area is outside the planetarium. Go to the table matching the name of your team for the Group Competition. It will also be marked with the sector, row and seat number assigned to you inside the planetarium.
Open the envelope only when the supervisor gives the command to 'START'. You have 30 minutes, the supervisor will give the remaining time e.g. "10 minutes left", "2 minutes left". On the command 'STOP', stop working but do not leave your place until you are shown the 'GO NOW' sign. Take only your question papers, clipboard and pen/pencil (leave the atlas). Follow the directions into the planetarium keeping your distance from other participants and take your place. Do not talk to other participants.

During the tasks you may stand up to get a better view, but do not move around, change seats, talk to other participants, or shine your light at others or at the sky. The light must be pointed down at all times
The round is in 3 parts of 10 minutes each. The first part is for task 1. The second part is for task 2. The third part is for task 3. At 5, 2 and 1 minute before the end a warning will appear briefly on the sky.
At the end of the round wait in your seat until shown the 'GO NOW' sign. Follow the directions to the processing area and find the table matching your team as before (leave the light). Keep your distance from other participants and do not talk to them. After everybody is seated you will have 30 minutes to process your observations and complete the answer sheet (there will be a calculator, geometrical instruments etc. and a clock displaying the remaining time). At the end of 30 minutes place your answer sheets in the envelope and wait at your desk until told to leave the area.

Planetarium Round 1: 'Knowledge of the sky'

The projector will display the sky as seen from near the equator $\left(0^{\circ} \mathrm{N}, 19^{\circ} \mathrm{E}\right)$. The rotation of the sky will be stopped for about 2 minutes for part (a), then it will start to rotate for parts (b) and (c). The objects for parts (b) and (c) will be displayed simultaneously.
(Projection time 10 minutes)
(a) A meteor shower will be visible in the sky. Determine the constellation of the radiant and estimate its right ascension and declination coordinates.

Constellation	right ascension	declination

(3 points)
(b) Identify which of the following variable stars visible in the sky are in low (write 'DIM') or high (write 'BRIGHT') brightness states. The mean magnitude as shown in the atlas and the magnitude range are given for each star

Name	atlas mag.	mag. range	DIM / BRIGHT
γ Cas (Cih)	2	$1.6-3.0$	
δ Cep	4	$3.5-4.4$	
μ Cep (Erakis)	4	$3.4-5.1$	
β Per (Algol)	2	$2.2-3.4$	
o Cet (Mira)	3.5	$2.0-10.1$	
χ Cyg	4.5	$3.3-14.1$	
$\mathrm{~L}^{2}$ Pup	4.5	$2.6-6$	
δ Sco (Dschubba)	2	$1.6-2.3$	

(8 points)
(c) Identify the constellations whose borders are marked and give their IAU abbreviations.

Planetarium Round 2: 'Retrograde Mars'

The projector will display Mars moving relative to the background stars over one season of visibility (1.5 years) starting from the heliacal rising, chosen so that Mars will be at maximum ecliptic latitude at opposition.

The ecliptic will also be displayed, marked with the positions of the Sun during the year and the current date. The Sun will always be below the horizon.
Synodic period of Mars $=780$ days.
(Projection time 10 minutes)
(a) Record the following quantities:

i. \quad the dates of quadrature (when the elongation of Mars is 90°)		
ii. \quad the date of the beginning of retrograde motion		
and the date of the end of retrograde motion		
iii. the date of opposition		
iv. the ecliptic latitude at opposition		
v. \quad the width in ecliptic longitude of the loop made by the planet		

(8 points)

Based on your observations and assuming the orbits of Earth and Mars are circular,
(b) On the answer sheet, mark the positions of the Sun, Earth and Mars at the moments of opposition and quadrature in the heliocentric system and determine the radius of the orbit of Mars in a.u. geometrically, without using Kepler's Laws. Show your method in the answer sheet.
(c) Derive the inclination of the orbit of Mars to the ecliptic.
(3 points)
(Total: 20 points)

Answer Sheet

Planetarium Round 3: 'TRAPPIST-1'

Aliens have found out that Earth's astronomers discovered planets in the TRAPPIST-1 system by observing numerous transits. They have used their flying saucer (similar to the one you were in for the observation round) to take you to the 5th planet (designated f) of TRAPPIST-1, and have asked you to show them the methods Earthlings use to uncover the parameters of the system. A clock displaying time in Earth hours will be visible. The whole presentation lasts 520 h (1 s represents 1 h).
(Projection time 10 minutes)
Based on your observations (you can use the space on the last sheet for observing notes),
(a) determine the following quantities for the planet you are on (use Earth hours for the times)
(7 points)

i.	length of the sidereal day $[\mathrm{h}]$	
ii.	orbital period [h]	
iii.	length of the 'solar' day [h]	
iv.	circular orbit	YES / NO
v.	obliquity (axial tilt)	

(b) and the following quantities for each planet b, c, d and e;
(16 points)

	b	c	d	e
synodic period $[\mathrm{h}]$				
maximum elongation $\left[{ }^{\circ}\right]$				

(c) calculate the orbital period in hours and the semi-major axis in tau (where 1 tau = "TRAPPIST
$1 f$ astronomical unit" $=$ the semi-major axis of the orbit of TRAPPIST- $1 f$) of each planet:
(8 points)

	b	c	d	e
orbital period $[\mathrm{h}]$				
semi-major axis [tau]				

(d) The term 'gravitational resonance' is used to describe the phenomenon when ratio of the orbital periods of two planets in a system is close to the ratio of two integers. The table below lists some of the resonances observed in the TRAPPIST-1 system. Find which pair(s) of planets correspond to each of the listed resonances if any.

Resonance	Pair of planets
$3: 2$	
$8: 5$	
$5: 3$	
$8: 3$	
$4: 1$	
$6: 1$	

Answers

Group Competition Answer Sheet

20.0		A	N	D	
\star			1	N	
\sim			c	A	S
8		D	0	R	
(III)			L	Y	R
2		C	A	M	
Ω_{4}		A	0	R	
\triangle			ς	E	x
2			c	Y	a
\forall			0	P	H
ξ	P	U	P		
1		T	E	L	
333		E	R	$($	
∇	C	v	N		
q	L	M	1		
\ddagger	L	A	C		
\bullet			4	M	A
(1)			5	C	U

Southern Pole Star

Year: 20585

$$
\begin{aligned}
& \text { Saros Lanar eclipse } \\
& \text { Date: } \AA^{\text {st }} \text { Mack }, 2025 \\
& \text { Hour: } 18 \text { UT } \$+9 \text { ? } 4
\end{aligned}
$$

Group Competition Answer Sheet
(*) M
A0-3

Astrolabe: stars						
Star	Bayer letter or name	Constellation	Päght Ascension (h)	Declination [1]	$\begin{aligned} & \text { Distance } \\ & \text { flyl } \end{aligned}$	Mark allens star
A	Altair	Agl	19.87	9	17.7	
${ }^{\text {B }}$	Deneh	CH_{9}	20.73	46	2000	
c	Vega	Lyr	18.67	39	24	X
D	Resal logue	Oph	17.60	13	49	
E	Enif	Pe_{1}	23,07	15	133	
F	A lioth	UMa	13	+60-	83	
${ }^{\text {c }}$	Pollux	Gem	5.27	56	43	
H	Arceures	Boo	15.67	26	75	
t	α-cuon	Com	14.33	19	37	
κ	Aldeharan	Tan	$9,67$	17	05	
L_{2}	Buelgeuse	Ori	5.47	7	250	
M	Al heme	Gem	5.93	8	548	
N	Rigel	Ori	5,20	-8	863	
0	Prochoon	CMi	7.67	6	11	
P	Strius	CMa	6.73	-17	8.6	
R	Spice	Vir	13.47	-10	250	
s	Alphar el	Hya	9,53	-9	170	

Group Competition Answer Sheet

$1(\bullet))^{4}$

Astrolabe: right ascension and declination of Sun, times of sunrise and sunset

	right ascension	declination
coordinates of the Sun	22^{h}	-10°

	time of sunrise	time of sunset
19 February	6	17.2

Neptune

T. 1 (5 pt)

Sulutim:
We curparte syrudicpenve
Trephre $(y)=a^{3 / 2}=164 .\{a .22113$
$T=\left(\frac{1}{T_{\theta}}-\frac{1}{T_{t y}}\right)^{-1}=\left(\frac{1}{2}-\frac{1}{164.54}\right)^{-1}=1.006101571 \mathrm{y}$ angle change (previuvs vs current oppositions)
$N: \quad: N \quad \frac{1.006101571}{1} \times 360^{\circ} \equiv 2.19656764^{\circ}(\bmod$
Q We wen't a tutel cherg of 1000 (300

$$
\text { outron } \rightarrow \text { sprizg), which curciparis to }
$$

so the year was $2024-82=1942$

Theory

Magnetic Field

$$
\begin{aligned}
& \text { r.2 (5.0pt) \& if fa drualar mation of } \mathrm{C}^{-} \\
& \frac{m_{1} v i}{r}=(e) \cdot x \cdot B \Rightarrow x=\frac{m_{1} v}{e k} \\
& \text { frumuy of ratation } \Rightarrow f \cdot \frac{\Delta}{2 r^{\prime}}=\frac{\Delta C B}{2 \pi \cdot \pi_{C}}=\frac{C B}{2 \pi m_{C}} \\
& \text { fapuny of ratation }=\text { ferouny of unision }=\frac{c}{\lambda} \\
& \frac{a B}{\partial x_{m c}}=\frac{c}{\lambda} \Rightarrow \\
& B=\frac{2 \pi m_{e} c}{\lambda e} \\
& \text { by herma } \quad b_{\text {se }} \quad=17.85 \times 10^{3} \mathrm{~T} \approx \frac{\lambda e}{2 \times 10^{4} \mathrm{~T}} \\
& \text { flima } \Rightarrow \text { fre } \mathrm{H}^{+} \Rightarrow B \sim \sim \frac{2 \pi m p c}{\lambda^{\prime} .} \\
& \lambda^{\prime} \vee \frac{2 \pi m p c}{\xi_{e}} \approx 1 m m
\end{aligned}
$$

Theory

Europa

```
    T. 3 ( 5.0 pt )
        \(I^{\prime}-I=-2.5 \log \left(\frac{E^{\prime}}{F}\right)\)
        \(\frac{E^{\prime}}{F}=10^{-\frac{\dot{2}}{f}\left(I^{\prime}-5\right)}=10^{-\frac{3}{5}(\pi-2-204)}=120.23\)
        \(\mathrm{F}^{\prime}=120.23 \mathrm{~F}\)
```



```
        \(F^{\prime} \cdot \vec{\prime} \frac{0^{2}}{4}=1 x \frac{p^{9}}{\pi}\)
        \(\frac{F^{\prime}}{F}=\left(\frac{D^{\prime}}{D}\right)^{2} \quad D^{\prime}=\sqrt{\frac{E^{\prime}}{r}} D=\sqrt{120.23} \times 82 \mathrm{~m}\)
            \(=19-113 \mathrm{~m}\)
            \(=90 \mathrm{~m}\)
```

Microlensing

$$
\begin{aligned}
& \text { A. } 4 \text { (10.0 pt) } \\
& \text { asGuNing A类 } \approx 1 \geqslant I_{R} \approx 0 \\
& W_{C}=\underbrace{}_{B S} \\
& b=6 \mathrm{~m} \\
& S=4 \pi A_{4}^{2} \quad W_{c}=\frac{\lambda 4 \pi h^{2} \Delta T}{h} \\
& W_{C}=2,64 \cdot 10^{12} \mathrm{EV} \\
& W_{R}=W_{0} \cdot \frac{M_{F} E}{M_{E}} \\
& U_{\theta}=4 \pi R_{\Theta}^{2} P_{\theta} \\
& w_{A}=W_{\theta} 4 \| R_{\theta}^{2} P_{\theta} \frac{M_{E}}{M_{\theta}}
\end{aligned}
$$

V casti (b) vyberte pravdepodobnejps x droj tepla RADMOMKIIVNI ROZPAD

- clarovester
Theory

Dark Energy

```
T. 5 ( 12 pt)
    Since dotk every is berstht, it soess 4 sembe with redgutf.
    \(p_{0}=p_{m e}+\frac{\varepsilon_{A}}{c^{2}}\) is wing \(H_{s}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpt}\),
                        \(H_{0}=70 \times 4^{3}-\frac{1}{3} \times 10^{-4} \frac{m}{\sqrt{0}}=21.623 \times 10^{-12} \mathrm{~d}\)
        \(\varepsilon_{A} \cdot c^{7}\left(\rho_{0} \cdot \beta_{M,}\right)=c^{2}\left(2,2024 \times 10^{-27}-2 . \varepsilon_{V 10}^{-17}\right)\)
                \(F_{A}=5 \cdot 35,4447733 \times 10^{\circ 25} \mathrm{Jm3}\)
                        \(\varepsilon_{x} \approx 5.9 \mathrm{Jm}^{-3}(2.65)\)
```

 Since \(\rho_{m} \propto a^{-3}\) a.ci \(\rho_{A}=\frac{\varepsilon_{A}}{c^{3}} \propto a^{0}\) (At is anatany.)
 \(\rho_{m} \cdot \rho_{c}, a^{-3}=\frac{\varepsilon_{a}}{c^{2}}\)
 \(a * \sqrt[3]{\frac{p_{k+c}^{2}}{F_{A}}}=\frac{1}{1+2}\)
 \(\Rightarrow z=0.31743=0.32\)
 Theory

辐射热測量计

Neutrínók

```
T. 7 (cont.)
    (d) Period
        \(\frac{1}{p}-\frac{1}{m_{\text {fno }}}-\frac{1}{M_{\text {pra }}}\)
        \(P=\left(\frac{1}{27.554550}-\frac{1}{27-212221}\right)^{-1}=2190.35\) days
                            \(=2190.35\) months
                            27.321661
                280.17 months
```

 T. 8 (20.0 pt)
 dilo \(e^{+}+p^{+} \rightarrow n^{2}+p^{3}\)
 $\Delta t=0,01 \mathrm{~s}$
mass of a ${ }_{26}^{56}$ Fe nuoleus $m_{0}=56$ atovicmastunit $=$
$=9,30 / 16 \cdot 10^{-26}$
Akurves of clocus: $N=\frac{M_{0}}{M_{0}}=2,1373.10^{\pi}$
$1 / 10$ ien of it is e^{-}, tit ancteren $1 / 16$ th is P^{\top}
\Rightarrow newsber of neuduises: $n=\frac{N}{10}=2,1373 \cdot 10^{54}$
$d=8 \pi \rho c$

$$
f=\frac{n}{4 r d^{2} \Delta t}=2,7905 \cdot 10^{14} \frac{1}{w^{2} s}
$$

in tere sum:

${ }^{4} p^{+} \rightarrow{ }_{2}^{4} \mathrm{He}_{e}+2 e^{+}+2 \mathrm{O}+E$
$\varepsilon=\left(4 m \mathrm{sc}^{2}\right)-\left(m_{m e} c^{2}+2 m_{c} c^{2}\right)=4,07 \cdot 10^{-12} \mathrm{f}$

$L_{\theta}=\frac{E}{\Delta t}=\frac{4 \varepsilon}{\Delta t} \Rightarrow y=\frac{L O \Delta t}{\varepsilon}=9,+010^{35} \Rightarrow m=2 y=1,81 \cdot 10^{26}=n$
$f=\frac{n e}{\Delta t+1} \pi d_{0}^{2}=$
$d_{0}=(A M)$

Theory

Second eclipse

t.9(cont.)
Your calculations: In the Bolek system, mininiomm brightoders only Your calculations: in
Also the eclipse last: for $\Delta t_{B}=t_{\text {ens }}-t_{6 \text { eq }}=4 \mathrm{~h}(-4 \mathrm{~h})=8 \mathrm{~h}$. Let us
suppose that the stave wisc passer in front of the other one
has an apparent magritual equal to mm_{2} and the other one mz
Paring the eclipse ansimam brightener, the system has apparent
magnitude m_{4} and apparent baightress, 4 , whereas on tat and $L_{\text {tot }}=$
$=4+4$, when both stars are varible. (hus,

$\log \left(1+\frac{4}{4}\right)=0,48 \approx \frac{h_{2}}{4}=2,02$. A grevergis L_{0} th stang hare a

In the secondary eclipse, the mimmand brightness is L_{1}, so:

 edipe Moreover, if the stars Chare mizar a velocities u_{2} and u_{2} Bach one, theng, in the proothe eclipses, the one, tar ir moving with shreberph separent velocity of $U_{\infty x}=\left|u_{1}-U_{2}\right|\left(\vec{U}_{1} \uparrow \downarrow \vec{u}_{2}\right)$
During the ploce eclipse, tint the first stan covers ox distance of $r=2 R_{1}+2 R_{n}=4 R$ in relation to the second ones so $\Delta t_{R}=\frac{4 R}{U_{X}}=\frac{4 R}{\left(v_{1}-v_{8} \mid\right.}$. If the secondary eclipse lasts for Δl_{0}^{\prime}, then, blue to the second star covering again x distance of $r=M_{1}+2 R_{2}=4 R$ with ar velocity $U_{0 x}=\left|v_{1}-v_{2}\right|$.
Cons equent lu, $\Delta t_{B}^{\prime}=\frac{4 R}{M_{1}-V_{2} r}=\Delta t_{8}=8 \mathrm{~K}$
Moreover, the secondary eclipse minimum brightness lasts again
T.9 (cont.) just for a moments since the stor second stow covers the first one again only for a moments because of $R_{1}=R_{2}=R$ In the Lolek system, the eclipse parts for $\Delta t_{1}=$ $=3 h-(-3 h)=6 h$, whereas the total eclipgre $\Delta t_{1}^{\prime}=1 h(-\mu) \cdot 2$ Let ur suppose that the stor 3 passes in front of the star 4 during the primary eclipse. If they have velocities u_{1} and u_{4}, the star 3 hat a velocity $v_{5} x_{3} u_{3}-u_{4}$ l in relation with the star 4. The eclipse lasts for the enemas Siarertio it needs to cover a distance equal to $d_{0}=2 R_{3}+2 R_{4}$, whereas the total eclipse lasts for the xearmio Siaoupla it needs to cover a distance $d^{\prime}=\left\{R_{s}^{\text {sf in }}\right.$ if it is bigger or $d^{\prime}=2 R_{4}-2 R_{3}$ in case it is smaller.
 os $2+\frac{R_{y}}{R_{3}}=3-R_{Y}=2 R_{>}>R_{3}, \cdots$ porte. $R_{3}=t R_{1}$
Thus, only the second care is acceptable. Thus $U_{\sigma x}=\frac{d}{\Delta t}=\frac{d}{\Delta t a}$ $\frac{2\left(R_{3}+R_{4}\right)}{2\left(R_{4}-R_{9}\right.}=\frac{6 h}{2 n} \approx \frac{R_{9}+R_{4}}{R_{4}-R_{3}}=3 \cos R_{3}+R_{4}=3 R_{4}-3 R_{3}=2 q R_{4}=4 R_{30}$ $R_{4}=2 R_{3}$ (1)
Thus, if am' the apparent magnitude of the system during the eclipers then: $m_{n}-m_{\text {tot }}=\left\{55 \log \frac{L_{\text {tot }}}{l}=\right.$

Theory

$$
\begin{aligned}
& =10^{\frac{0,24}{25}}=1,25 \Leftrightarrow 4 L_{7}+4 L_{4}=5 i_{9}+3,75 L_{4} 400,25 L_{4}=L_{3} 00 \\
& L_{4}=4 L_{3} \\
& \text { Becawe of } R_{4}=2 R_{s}>R_{3} \text {, during the secondary to tal eelipes, } \\
& \text { theappo only the star } 4 \text { will be visible and consequently. } \\
& \text { the apparent baightourbrightress of the system will be } \\
& \text { equal to } C=l 4 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =2,5 \log \left(1+\frac{1}{4}\right)=2,5 \log , 25=0,24 \Leftrightarrow m_{\text {ma }}=11,24=m^{\prime} . \\
& \text { Hameres this time the total eclipe will Last for } \Delta t_{L}^{\prime}=\frac{q}{U_{x}}
\end{aligned}
$$

Theory

Aldebaran

```
a) \(0=\frac{\left(\frac{313}{2}-0.52\right) \cdot 60}{206265} d_{\theta-2}=0.27 R_{\theta}\)
    \(\phi=44.44+\Delta \rho\)
    \(\Delta 4=\sin ^{-1}(0.27+\sin 21.07)-22.07^{\circ}=20.08\)
    \(\varphi_{1} * 64.52\)
```



```
c) \(\omega=\frac{v_{\text {antice }}}{d}, d=380200\) fion \(\rightarrow 304 \%\) var and
\(\rightarrow \omega=26.07 \mathrm{arcmim} / \mathrm{mur}\)
```



```
    \(\left|v_{\text {rel }}\right|>\left|\left|v_{\text {nown }} /-/ k_{\text {disaver }}\right|\right|\)
    - \(V_{\text {rel }} \in((1025.16-203.26)\) ) \((1023.16+203.26))\)
    Waiseze 7 '/hour tam serire
    vaciation of \(d\) aeflisille compored to \(v\), so isnore
```



```
\(\rightarrow \omega_{\text {max }}=39.1\) awmin \(p_{1}\)
```

Theory
(-) 1

Theory
(e) 1

CAN-S2
A11-2
X-ray emission from galaxy clusters

$$
\begin{aligned}
& \text { T. } 11 \text { (} 30.0 \mathrm{ps} \text {) } \\
& \text { a) } N_{e}=\frac{M}{\left(M_{H e}+10 M_{-1}\right)} \times(2+10) \\
& n_{H}=\frac{M}{\left(M_{H+}+10 m_{H-1}\right)} \times 10 \\
& n_{H E}=\frac{M}{\left(m_{2 e}+10 m_{1-1}\right)} \\
& N=\frac{n}{V} \\
& L_{H}+L_{H e}=6 \times 10^{-41} \mathrm{Ne} T^{\text {है }} \mathrm{V}\left(\mathrm{NH}_{\mathrm{H}} \mathrm{ZH}^{2}+\mathrm{NHere}^{2}\right)^{2} \\
& =6.10^{-41} \frac{n_{e}}{V}+\frac{1}{2} N\left(\frac{n_{H}}{X} Z_{H}+\frac{n_{H C}}{\forall} Z_{M e}^{2}\right) \\
& =6 \times 10^{-4} \cdot \frac{T^{\frac{1}{2}}}{V} n_{C}\left(n_{H} Z_{H}+n_{H C} Z_{H E}^{2}\right) \\
& =6+10^{-41} \frac{T_{2}}{V}\left(\frac{M}{\left(m_{2+c}+10+4+1\right)}\right)^{2}(2+10) \\
& \left(10,1^{2}+1-2^{2}\right)
\end{aligned}
$$

Theory
1（e） 4

```
DART
T. 12 (40.0 pe
    (a)
    \(m_{s} थ s=\left(m_{s}+m\right) \mid \Delta v i\)
        \(\Delta v=-8.228 \times 10^{-4} \mathrm{~m} / \mathrm{s}\)
\(\operatorname{cin}^{2 N} v=\sqrt{\frac{G M}{C}}\)
biorts
    \(v^{2}-\Delta v=\sqrt{\frac{G M^{2}}{\mathrm{~F}^{1}}}\)
```



```
    \(P^{\prime}=2 \pi \sqrt{\frac{C^{3}}{C M}}\)
    \(\begin{aligned} & P^{\prime}-P= \frac{2 \pi}{\sqrt{G M M}}(\underbrace{\left.r^{3 / 2}-r^{3 / 2}\right)} \frac{1}{(2-\Delta v)^{3}} \approx \frac{1}{v^{2}} \\ & \frac{G M^{3 / 2}}{\left(v-\Delta v^{2}\right)^{2}}-\frac{G M^{3 / 2}}{v^{3}}=\frac{3 \Delta v^{2}}{v^{2}} G m^{3 / 2}\end{aligned}\)
        \(\Delta P=2 \pi G M \times \frac{3 \Delta v^{2}}{v^{4}}=-10 \mathrm{~min} / /\)
    ( \(\omega\)
        \(\Delta P^{\prime}=2 \pi \mathrm{G} a \times \frac{3 \Delta v^{\prime}}{v^{2}}=-33^{-n} \Delta v^{\prime}=\Delta v \times 3.3\)
    \(m_{s} V_{s}=-\beta+(\underbrace{\left(s_{s}^{\prime}+m\right.}) \mid \Delta v^{\prime}\)
    \(p=-m_{s} v_{s}+m\left|\Delta v^{\prime}\right|=8.1 \times 10^{6} \operatorname{tg} \frac{\mathrm{c}}{\mathrm{s}}\)
    \(\frac{\rho}{P_{b i}}=\frac{\rho}{m \theta}=0.01\)
(c) \(\Delta v^{i}=3.3 \Delta v=-2.7 \mathrm{mns}^{-1}\)
```

Theory

PER－S2
Theory

LISA
T． 13 （ 45.0 pt
$\mathrm{T} .13(45.0 \mathrm{pt})$
$D=2,34 / \mathrm{Kcc}=7,22124.40^{46} \mathrm{~m} \mathrm{~m}$
$P=414,79 s$ ค $f=\frac{2}{p}=4,8217.10^{-3} \mathrm{~V}$
gra ley de kepler：UK＝M，＋M，
$\frac{p^{2}}{a^{3}}=\frac{4 r^{2}}{6 M}-D \quad P^{2}=\frac{4 \pi^{2}}{6 M^{3}}$
$\rightarrow 2 p \frac{d p}{d 7}=\frac{12 a^{2} r^{2}}{6 M_{T}} \frac{d a}{d 7}$

$$
-\frac{64}{5} \frac{b^{3}}{c^{3}} \frac{\mu_{1} \mu_{2}\left(M_{1}+\mu_{2}\right)}{a^{3}}
$$

$\rightarrow p \frac{d P}{d t}=\frac{6 \pi^{2}}{G n_{T}} \cdot\left(-\frac{64}{5} \frac{c^{3}}{c^{3}} \frac{M_{1} H_{2}\left(\mu_{1}+M_{2}\right)}{a}\right)$

$$
\begin{aligned}
& \text { T. } 13 \text { (cont.) } \\
& \frac{d P}{d 7}=\frac{-384 r^{2} 0^{2} M+F^{4} 2}{5 c^{5} a 1}=a=\sqrt[3]{\frac{D^{2} 6 M}{4 \pi^{2}}=\frac{p^{3}}{2^{2 / 3}} \pi^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& 04=40
\end{aligned}
$$

$$
\begin{aligned}
& A_{B}^{\text {T.13 (cont.) }} h=\frac{2(G M)^{5 / 3}(\pi f)^{2 / 3}}{C^{4} D}
\end{aligned}
$$

$$
\begin{aligned}
& 0<0=0,4 \% 345
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow B S \text { Snint } 9 \\
& \text {-1) a) Les; it's possibley }
\end{aligned}
$$

A13-4
Theory
$1(\Leftrightarrow)$
Theory
(•) 4

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
3,776.10^{23}=A \\
3,604,10^{7}=B \\
1,416.10^{32}
\end{array}\right\} F
\end{array}\right\} \quad \begin{aligned}
& A \\
& M_{2}+\frac{B}{M_{4} M_{2}}=F
\end{aligned}
$$

$$
\Rightarrow A+\frac{B}{M_{1}}=F \cdot M_{2} \Rightarrow M_{2}=\frac{A+B}{F+\frac{B}{F M}}
$$

$$
\leftrightarrow M_{1} \cdot M_{2}=\frac{A M_{1}}{F}+\frac{B}{F} ; M_{1}+M_{2}=M_{1}+\frac{A}{F}+\frac{B}{F M_{1}}
$$

$$
\text { -AM }=\frac{\left(\frac{F M_{1}}{F}+\frac{B}{F}\right)^{3 / 5}}{\left(M_{1}+\frac{A}{F}+\frac{B}{F M 1}\right)^{1 / 5}} \text {; from the graph } 2:
$$

$$
\begin{aligned}
& M_{1}=0,56 M 0=1,11,10^{30} \mathrm{~kg} \\
& N_{0} M_{2}=0,249 M 0=4,95.10^{29} \mathrm{~kg}
\end{aligned}
$$

测 ＋

管

A
（b）（b）

4кuneki رnd
$R_{0}=6378 \mathrm{~km} \Delta H_{0}=5.972 \times .10^{24} \mathrm{~kg} \Omega=6.674 \times 10^{-14} \mathrm{~m}^{3} \mathrm{~kg}^{-4} \mathrm{~g}^{-2}$

Observation Round

IRI－S1 A2－2

between two saterite is so se
time to trever this angle： $2^{\text {s }}$
$0^{\circ} 25^{\prime}$
$\rightarrow \dot{a}=\frac{-0^{\circ} 25^{\circ}}{2^{5}}=0,2083 \frac{\mathrm{deg}}{\mathrm{s}}$
b）about 2 seconds．

$$
\begin{aligned}
& \text { d) angular seperation of (cont)Az } \\
& \text { two satelite in observator } \frac{3}{3} \\
& s \mathrm{ky}:=\alpha \\
& \alpha=1 \dot{a} \Delta t \quad, \quad \dot{a}=0,2085 \quad \frac{d g}{s} \\
& \Delta t=2 \mathrm{sec} \\
& \rightarrow \alpha=0,417 \mathrm{deg} \\
& \Rightarrow d=\left(R^{2}+(R+h)^{2}-2 R(R+h) \csc \theta\right)^{1 / 2} \\
& =9,839 \times 10^{5} \mathrm{~m} \\
& \rightarrow l=\alpha d=7.16 \mathrm{~km}
\end{aligned}
$$

Các Mặt trăng của hành tinh (10 điểm)

S6	Ten	Cápsa0
I	Mimas	13.0
II	Enceladas	11.8
III	Tethys	10.4
IV	Dione	10.6
V	Rhea	9.9
VI	Titan	8.5
VII	Hyperion	14.4
VIII	Japetus	11.0

Observation Round

```
A.3.10pt)
```



```
IL, ...)
```

Observation Round

INA-S2

Supernova (10 poin)

Layar lain akan meryajkan sebuah galaksi dan nove terang (mag < 11) yang sebelumnya tidak tampak Perkirakanlah koordinat asensio rekta (RA) dan dekilinasi (DEC) Nova ini, dan perkirakan magnitudonya. Kamu boleh gunakan Map no 2 yang dilengkapl keordinat bintang dan magnitudonya.
A. 4 (10 pt)

Asentio Reita	Diklinasi	Perkiraan magnitudo
$g^{h} 55^{m} y 3^{3}$	$+\left(9^{\circ} 4^{\prime} 50^{\prime \prime}\right.$	10.2

Star	RA J2000			DEC $\sqrt{2000}$			mag
	h	m	3	deg	m	s	
80+69 541	9	55	27	68	56	22	10.3715
? Gaia DR2 1070097015969362560	9	53	27.9	68	58	43	11.2281
3 Gaia DR2 1070144329329069558	9	53	17.7	69	2	48	10.0785
Gaia DR2 1070453463896461952	9	57	0.8	68	54	8	8.9148
5 Gaie DR2 1070455010084791680	9	\$5	25.9	68	51	21	11.4722
4 Gaia DR2 1070459408131195776	9	58	1.6	63	57	24	10.20C
7 Gaia DR2 1070467070352960512	9	55	4.4	68	54	5	9.1615
¢ Gaia DR2 1070467379690606976	9	65	1	68	56	22	10.4605
4 Gain DR2 1070468160864590208	9	54	45.3	63	56	59	12.2087
14 Gain DR2 1070469475534553728	9	55	41.4	69	0	30	11.7856
Gain DR2 1070470265608536448	9	55	45	69	1	46	11.2905
't Gaia DR2 1070470609404512512	9	55	33.2	69	3	55	13.3020
$1)$ Gain DR2 1070472293033168640	9	54	53.2	69	3	48	14.2845
\|-Gaia DR2 1070473186386370176	9	54	42.3	69	5	52	11.6033
14 Geia DR2 1070476794158817152	9	57	38.8	69	10	44	12.6368
SGela DR2 1070476858581360384	9	56	47.1	69	7	27	12.7259
Gaia DR2 1070476897238038272	9	56	34.4	69	7	51	13.6578
Gaia DR2 1070477240835421440	9	56	44.8	69	9	1	13.7626
A Gaia DR2 1070477305257957888	9	56	45.1	69	10	1	11.4495
Gaia DR2 1070522934990509312	9	55	15.4	69	15	19	12.0436
Gaia DR2 1070523111006221568	9	54	28.5	69	13	22	11.0704
HD85458	9	55	4	88	54	6	9.1615

Observation Round

$$
\text { DA. } 1(50.0 \mathrm{pt})
$$

$$
\theta=\frac{2 R}{D}
$$

Ster in Ln c readies R Disustence to $C M C$.
To find M_{v} and M_{x} of each stor in barney:
$L_{z v} / L_{i v}=\ll \gamma_{c v}$ (queen in table).
$L_{2} \gamma_{u L_{N}}$
$L_{\text {war }} L_{M}\left(1+\gamma \gamma_{i}\right)$ and $L_{H_{2}}=L_{2}\left(1+\frac{1}{8 N}\right)$

$$
V_{2}=V_{1+2}+2 \cdot 5 \log _{0}\left(\frac{C_{H 2}}{L_{2}}\right)=V_{u 2}+25 \log _{L_{0}}\left(1+\frac{1}{\delta_{21}}\right)=m_{V_{C}}
$$

Cinemse:

$$
\begin{aligned}
& K_{1}=K_{1+2}+2.5 \log _{\omega}\left(1+\gamma_{L K}\right)=M_{K 1} \\
& K_{2}=K_{1+2}+2.5 \log _{\omega}\left(1+\frac{1}{\gamma_{i K}}\right)=m_{2 c 2}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{-0.4\left(v_{i+2}-v_{1}\right)}=\frac{L_{1+2 v_{2}}}{L_{N}}=1+\gamma_{L V} \\
& -2.5 \log _{50}\left(H \gamma_{0}\right): V_{102}-V_{t} \\
& V_{1}=V_{1+2}+2.5 \log _{v_{6}}\left(1+\gamma_{u n}\right)=m_{2 i}
\end{aligned}
$$

DA. 1 (cont.) Then : fill So from $M_{V} \cdot M_{K}$ for each ster.

$$
S_{v}=M_{v}+S L_{r u}\left(\theta_{\text {res }}\right): \theta_{\text {uss }} \text { is anger dameke in mos. }
$$

$$
\frac{S_{v}-M_{*}}{S}+\log _{-\infty}\left(\theta_{-\infty}\right)
$$

For IO: 66 LE - Cm $\overline{\mathrm{C-ELL} .0360:}$
$S_{u n}=S .71 \pm 0.80$

$$
\overline{\left(M_{1}-M_{k}\right)_{2}}=17.062-14.730=2.732
$$

$\underline{\mathrm{SO}_{2}+630}=0810$

$$
\theta_{\text {mus }}=10^{\frac{531-1 / 2120}{3}}=3.21 \times 60^{6} \mathrm{mas}
$$

$$
\begin{aligned}
& M_{v i}=16-73+7.5696(1+2.80)=18.179 \\
& \text { ore: }\left(6.73+2362\left(1+\frac{1}{28}\right)=17.062\right. \\
& M_{K_{1}}=15.896 \\
& \text { M M } M \text { : } 4.33_{0} \text { (sumiterly). } \\
& \left(M_{v}-M_{K}\right)_{1}=18.179-15.8 \%=2.283
\end{aligned}
$$

```
DA. 1 (cont.)
ener, \(=\frac{d}{d s}\left(6 \frac{5}{6} \cdot \frac{2}{3}\right) \times \frac{94 \%}{50} \frac{0}{60}\)
```



```
    \(=i_{0}^{\frac{0 \pi}{5}} \frac{5 v(o b) 1+6}{2}\)
    Sot
```



```
\(\theta_{1}=\frac{\pi}{6.88 \times \mathrm{ce}^{3}} \theta_{\mathrm{man}}=1.55 \times 10^{-2} \mathrm{rad} \pm \frac{6.75 \times 6^{-3} \pi}{6^{-18} \times 10^{8}}\)
\(R_{1}=\left(7.05 R_{0}>\theta_{n}=\frac{2 R}{D} \quad \sigma_{*}=\operatorname{comen} x\right.\)
        \(D=\frac{2 R}{Q_{\operatorname{nad}}}\)
connon \(\sigma_{0}=\sigma_{0}\left|\frac{\alpha}{\alpha 0}\left(\frac{2 \pi}{\theta}\right)\right|\)
    \(=\sigma_{0}\left(\frac{2 k}{\beta^{2}}\right)\)
\(D_{1}=\frac{37.06 R_{0}}{15590^{\circ \prime}}=49.59 \mathrm{mux}\)
```


$$
2 \mathrm{Nov}_{1}=3.71 \times 10^{-3} \times \frac{5.71 \times 0.8 \times 106}{500}=6.75 \times 10^{-50 n s}
$$

$$
\theta_{1}=\frac{\pi}{6.48 \times 0^{3}} \theta_{\mathrm{man}}=1 . S 5 \times 10^{-3} \mathrm{rod} \pm \frac{6.75 \times 16^{-3} \pi}{6^{.18} \times 0^{8}}
$$

$$
R_{1}=\left(7.05 R_{0}\right)=\frac{0\left(1.55 \times 1 e^{-11} \pm 3.27 \times 6^{-15}\right) \mathrm{mad}}{\frac{2 \pi}{D} \quad \sigma_{*}=\operatorname{emen} \alpha x}
$$

$$
D=\frac{2 R}{Q_{\operatorname{mad}}}
$$

$$
\sin \operatorname{cosen}_{0}=\sigma_{0} \cdot\left|\frac{d}{d 0}\left(\frac{2 \pi}{\theta}\right)\right|
$$

$$
=\theta_{\theta}\left(\frac{2 R}{\theta^{2}}\right)
$$

$$
D_{1}=\frac{37.06 R_{0}}{1.559 s^{-2}}=49.5 * \mathrm{hac}
$$

$$
\sigma_{01} \pm 1.05 \mathrm{hpc} \Rightarrow 0_{1}=49.57 \pm 1.05 \mathrm{kc}
$$

$$
\begin{aligned}
& =i_{0}^{\frac{0 \pi}{5}} \frac{S_{v}(08) 1+6}{2}
\end{aligned}
$$

Data Analysis

$$
\begin{aligned}
& \text { DA. } 1 \text { (cont) } S_{\mathrm{n}}=S .70 \\
& \theta_{\mathrm{ms} 1}=7.00 \times 16^{-7}+1.47 \times 6_{\mathrm{mon}}^{4} \\
& \theta_{1}=3.39 \times 10^{-1} \mathrm{idd} \\
& R_{1}=37.30 R_{0} \\
& D_{1}=49.61=1.0^{4} \mathrm{han}
\end{aligned}
$$

$$
S_{v z}=S-S S
$$

werluty D by variance σ_{0}^{2}.

$$
\begin{aligned}
& \langle D\rangle=\frac{\left(\frac{D_{1}}{\sigma_{\infty}^{2}}+\frac{D_{2}}{\sigma_{\infty}{ }^{2}}+\cdots+\frac{D_{n}}{\sigma_{\infty}{ }^{2}}\right)}{\left(\frac{1}{\sigma_{\infty}{ }^{2}}+\frac{1}{\sigma_{\infty 2}^{2}}+\frac{1}{\sigma_{\infty}^{2}}+\cdots+\frac{1}{\sigma_{\infty}}\right)^{2}} \\
& \angle D>=\left(\frac{49.54}{10 s^{2}}+\frac{44.47}{1 \cdot 15^{2}}+\frac{48.43}{0.90^{2}}+\frac{48.31}{1 \cdot 0.8^{2}}+\frac{494}{6 \cdot 0 x^{2}}+\frac{47 \cdot 41}{6 \cdot 08^{2}}\right) \\
& \left(\frac{1}{1 \cdot \cos ^{2}}+\frac{1}{1 \cdot 15^{2}}+\frac{1}{0 y^{2} y^{2}}+\frac{1}{1 \operatorname{cog}^{2}}+\frac{1}{1+\psi^{2}}+\frac{1}{\cos 2}\right) \\
& \left\langle D=49.36 \mathrm{hpt} \pm \sigma_{0}=\sigma_{0} \times \frac{1}{N} \sqrt{\frac{1}{\sigma_{0}},+\frac{1}{\theta_{8}},-\frac{1}{\sigma_{0}^{2}}}=\underline{0.396 \pi x}\right. \\
& \langle 0\rangle=(79.36 \pm 0.39) \mathrm{hrt}
\end{aligned}
$$

Data Analysis

Isolated black hole
DA. 2 (75 pe)
(a)

$$
\begin{aligned}
\sqrt{\frac{n c m}{c^{2}} \frac{D_{s} D_{1}}{D_{s} D_{1}}} & =1.294 \times 10^{-8} \mathrm{mad} \\
& =2.669 \text { mas }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\theta_{c} & =\frac{A_{1} \theta_{+}+A-\theta}{A_{+}+A} \\
& =\frac{\frac{1}{4}\left(\frac{u^{2}+2}{u^{u^{2}+4}}+1\right)\left(u+\sqrt{u^{2}+4}\right)+}{\frac{u^{2}+2}{u \sqrt{u^{2}+u}}} \\
& =\frac{\theta_{E}}{4}\left[\frac{2\left(u^{2}+2\right) u}{\not a \sqrt{u^{2}+4}}+2 \sqrt{u^{2}+4}\right] \\
& =\frac{\theta_{E}}{2}\left(\frac{3\left(u^{2}+4\right)}{u^{2}+2}\right)=\frac{\theta_{E}}{2}\left(\frac{2 u^{3}+6 u}{u^{2}+2}\right)
\end{aligned}
$$

$$
\theta_{c}=\left(\theta_{E}\left(\frac{n^{3}+3 u}{n^{2}+2}\right)\right.
$$

(c)

$$
\begin{aligned}
\Delta \theta=\theta_{c}-u \theta_{E} & =\theta_{E}\left(\frac{u^{3}+3 u}{u^{2}+2}-u\right) \\
& =\theta_{E}\left(\frac{u}{u^{2}+2}\right) \\
\text { At } u & =0, \Delta \theta=0 \text { as expected. }
\end{aligned}
$$

(d) See A2-7
(e) Apply" linear reg.
$\stackrel{\rightharpoonup}{?}$ and
and $\delta v_{E}=\frac{N_{E}}{r} \sqrt{\frac{1-r^{2}}{n-2}}=1.6 \times 10^{-4}$ mes $/ d . y$
Similar

$$
\begin{aligned}
& W_{m}=-9.713 \times 10^{-3} \mathrm{mas} / \mathrm{day} \\
& U_{N}=3.4 \times 10^{-4} \mathrm{mas} / \mathrm{lam} \\
& \delta V_{N}=3.4
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } N_{E}=-2.30 \pm 0.06 \text { mas } / 4 n \text { (cont) } \\
& \text { ans } N_{N}=-3.55 \pm 0.72 \text { mas /yr }
\end{aligned}
$$

cell Looks at the pot, it is mare lime r for the last vab3lata pints as it is past The cheracterixte fire while it is with SE. So, bee apply linear reg $\mathrm{w} /$ the lad t委 6 pants, he se y
$\left(v / 6 p^{v-s)} N_{\text {/aE }}=-6.53 \times 10^{-3} \mathrm{mus} / \mathrm{dem}\right.$

$$
\delta N_{\text {NE }}=\frac{N_{N}}{r} \sqrt{\frac{1-r^{2}}{n-2}}=1.3 \times 10^{-4} \text { mas } / l_{y}
$$

And ($\mathrm{w} / \mathrm{B}^{\mathrm{p} u+\mathrm{s})}$

$$
\begin{aligned}
& \left(\mathrm{w} / 3 \mathrm{~m}^{-1+3}\right) \\
& N_{N}=-9.19 \times 10^{-3} \text { mas (da) } \\
& \delta U_{N}=1,7 \times 10^{-4} \text { wow fol }
\end{aligned}
$$

（e） 4

$$
\begin{aligned}
& \text { (G) (ouctid. bre upply liver resrassts, } \\
& \text { and ret } \theta_{E}=y_{n=3} 5.35 \\
& \theta_{E}=\frac{\theta_{E}}{r} \sqrt{\frac{1-r^{2}}{r-2}}=1 \% 1.2 \\
& \begin{array}{l}
\theta E=42,24.8 \text { mas } \\
\theta E=5.3 \pm 1.2 \mathrm{mas}
\end{array} \\
& (h) \\
& \theta_{E}=\sqrt{\frac{n G M}{c^{2}}\left(\frac{1}{D_{0}}-\frac{1}{D_{B}}\right)} \\
& =\sqrt{\frac{u \omega^{\mu}}{c^{2}}(\pi 8-\pi)}
\end{aligned}
$$

Data Analysis

USA－S3

A2－8

Graph for part ${ }^{2}$ ．．．
$u(t)$

Conhecimento do Céu（20 pontos）
O prejetor irá apresentar o cta visto priximo do equador（ $0^{\circ} \mathrm{N}, 19 \mathrm{~L}^{\mathrm{L}}$ ）．A rotacio do céu será interrom－ pida por cerca de 2 minutos para a parte（a），depois começaria a rodar para as partes（b）e（c）．Os objetos para as partes（b）elo tras ser projecatos simulaneamente．
（a）Uma chuva de meteoros serd visivel no céu．Determine a constelaçlo do radiante e estime as suas coordenadas de ascensảo reca e declinação．
1．a（3pt）

Constelaçino	ascensale reca	declinagto
Wherrios	23，	-10

（b）Identiflique quais das seguintes estrelas variaiveis visiveis no céu eatilo em estado de britho baixo （escreva＇DIM＇）ou alto（escreva＂BRIGHT）．A magnitude média mostrada no atlas e a faixa de magnitude sho fornecidas para cada estrela．

1．b（8 pl）

Nome	mag atlas	faixa de mag．	DIM／BRIGHT
${ }_{3} \mathrm{Cas}(\mathrm{CiH}) \mathrm{Mavid}$	2	$1.6-30$	Brishe
δ Cep V	4	3．5－4．4	Bucedt
μ Cep（Erakis）J	4	3．4－5．1	－pront
a Per Glgod J ＇T	2	$2.2-3.4$	Btiugt
－Cet（Mira）Wixit	3.5	20－10．1	S，if．iT
$x \mathrm{Cyg}$ ¢ ．te	4.5	3．3－14．1	（6）ers
L_{2} Pup ${ }^{\text {ch}}$	45	2．6－6	Rowndy
6 Sco（Dschubba）	2	1．6－23	Vion

F（c）Identifique as constelaç0es cujas bordas està marcadas e de suas abreviaruras IAU．

$$
\begin{aligned}
& \text { 1.c }(9 p t) \\
& U Q t, M u G, S 2+, C_{r \dot{\prime}}, T \nu C, H_{5}, C_{r A}
\end{aligned}
$$

Marte retrograd

Proiectorul va afisa planeta Marte in miscare fata de stelele fixe pe parcursul unui sezon de vizibilitate (1.5 ani), pornind de la rasaritul heliacal, ales astfel fincat Marte sa fie la latitudinea eclipticà maximá la opozitie.

De asemenea, ecliptica va fi afisata, marcata cu pozitule Soarelui pe parcursul unui an si cu data cotrentâ. Soarele va fi mereu sub orizont

Perioada sinodica a lui Marte = 780 de ani
(timp de proiectie: 10 minute)
(a) Gâseste următoarele mârimi fizice:

Bazandu-te pe observatiile astronomice pe care le-ai faccut si presupunand cal orbitele Pamântulul si Marte sunt circulare:
(b) Pe foaia de ràspuns, marcheaza pozitilile Soarelui, Pämantului sia a lui Marte in momentele opozifiei siale cuadraturii in sistemut heliocentric si determina raza orbite lai Marte in ua. printr-0 metods geometriç, fard a folosi Legile lul Kepler. Prezintà-ti metoda pe foais de rasspuns. (9) puncte)
(c) Gäseşte inclinarea orbitei lui Marte fa̧̧â de eclipticâ (3 puncte)

Planetarium Round

ROU-S5
(c) Determinà raza orbitei luil Marte

$$
\begin{aligned}
& \left.\begin{array}{rl}
2 . b \text { (cont.) } \\
\theta= & \frac{360^{\circ}}{P} \cdot\left(t_{\text {wquadratare }}-t_{\text {qposition }}\right)=49^{\circ} \\
r= & \frac{\pi_{0}}{\cos \theta} \\
r_{\theta} & =1 a u
\end{array}\right\} x>r=1,52 a u
\end{aligned}
$$

(d) Determina Inclinarea orbitei lui Marte relativ la ecliptical.

3.b (16 pt)

	b	e	${ }^{\text {d }}$	e
синодмиен периоа: [h]	421	80^{2}	$18 \mathrm{~g}^{h}$	450
максималната елонгация [1]	17°	25°	36°	4, S ${ }^{\circ}$

Часовник, хойто показпа времето в земни часове ще бьде ввдми. Цалата презентаций ще продьлжи 520 часа (1 г съответства на 1 час)

Използвайки Вашите набподения (Виее мокете да иэпопзвате мястото ка последиия пист за велеххи от наблюденеятар
(а) опредепете спедните пираметри на за планетата, на коатосе наиирате (изразете в земия чакове асичхии интереали от време)
3.a (7 pt)

i.	продвлжителноста на звездното денонощии [th			225^{h}	
ii.				2256	
iil.	продылжатенността деноноцие [h]		'cmenemoto'	cas	$\rightarrow \infty$
V.	Дали орбитата е хрьгова?			1No	
v.	Наклон на оста на пnanetata [']			0°	

[^0]Planetarium Round
(\because

(с) пресметнете продьлкителността на орбиталния период в часове и галямата попуос в дам (където 1 tau - " астрономическата единица за TRAPPIST-1/* = голямата попуос ка орбитата на TRAPPIST-1 1 sa вспка eatra or пnametите:

3.6 (8 pt)				
	${ }_{6}$	ε	d	c
орбитален периоа [n]	$3,4^{2}$	$59,0^{2}$	$102,7^{2}$	150
голима полуок на орбитата [tau]	0,29	0,42	059	0776

(d) Терминвт 'травитацционен резонанс' се изпопзва когато отмошеныето на орбиталните периоди

 (истемата TRAPPIST1. Намерете перио
3.d (4 pi)

Резонаноно отношение	Авойса пманети
$3: 2$	$f, e / e, d$
$3: 5$	
$5: 3$	e, c
$8: 3$	
$4: 1$	c, f
$6: 1$	ℓ, f

Results

OVERALL WINNER

Peter Andolšek \rightarrow Slovenia

BEST IN THEORY ROUND

Andrei - Darius Dragomir \rightarrow Romania

BEST IN OBSERVATION

Peter Andolšek \rightarrow Slovenia

BEST IN DATA ANALYSIS
Peter Andolšek \rightarrow Slovenia

BEST INTERNATIONAL TEAM — EX AEQUO
(5)_Astraea

Teo Alvånger \rightarrow Sweden
Moiz Muddassir \rightarrow Pakistan
Artavazd Harutyunyan \rightarrow Armenia
Dzaky Rafiansyah \rightarrow Indonesia
Vladimir Milanov \rightarrow Bulgaria
(12)_Victoria

Prodromos Fotiadis \rightarrow Greece
Paulo H. dos Santos Silva \rightarrow Brazi
Bryan Herdianto \rightarrow Indonesia
Boyu Wang \rightarrow China
Maksymilian Wdowiarz - Bilski \rightarrow Poland

WUNGRATULESONS!

Gold Medals		
Name	Student Code	Overall score
Peter Andolšek	SLO-S1	411
Evan Kim	USA-S3	382,9
Taichi Shimokobe	JPN-S3	378,2
Andrei-Darius Dragomir	ROU-S1	376,5
Benjamin Woodrow	GBR-S5	374,6
Rajdeep Mishra	IND-S3	365,2
Murilo De Andrade Porfirio	BRA-S1	362,2
Tejeswar Koduru	IND-S2	361,05
Mahdi Ostadmohammadi	IRI-S4	359,15
Ryan Lin	GBR-S2	358,9
Paulo Henrique Dos Santos Silva	BRA-S2	355,7
David Lee	USA-S4	351,5
Hakjin Lee	KOR-S3	344,5
Zander Li	CAN-S2	340,95
Md Sahil Akhtar	IND-S1	338,1
Charlotte Stevenson	GBR-S3	336,4
Kai Wen Teo	SGP-S4	333,35
Amir Mahdi Esmaeili Taheri	IRI-S1	331,65
Akarsh Raj Sahay	IND-S5	330,8
Bayan Gechev	BUL-S2	328,9
Arvin Rasulzadeh	IRI-S5	326,4
Frederick Weir	GBR-S4	322,6
Ara Mahdessian	CYP-S3	321,4
Maksymilian Wdowiarz-Bilski	POL-S5	321
David Bálek	CZE-S1	316,4
James Kennedy	GBR-S1	313,3
Diana Zazubyk	UKR-S5	313,2
Zhi Zheng Ong	MAS-S3	312,8

Silver Medals		
Name	Student Code	Overall score
Teofil Voicu	ROU-S5	309,7
Paulo Otavio Portela Santana	BRA-S5	307
Mihail Bankov	BUL-S1	306,4
Kittiphat Pongarunotai	THA-S3	304,7
Adhitya Chandra	USA-S1	303,3
Lora Lukmanova	BUL-S4	302,2
Cheng lan Lim	SGP-S3	299,6
Wongwaran Upawong	THA-S5	297,9
Hongyi Huang	CAN-S1	297
Boyu Wang	CHN-S4	291,8
David Zhang	USA-S5	290,7
Jiahang Chen	CHN-S1	290,3
Mohammad Nur Casib	PHI-S2	290
Dorottya Elekes	HUN-S1	288,2
Gabriel Hemetrio De Menezes	BRA-S3	285,8
The Minh Pham	VIE-S3	285,4
Kane Kiat Leng	SGP-S2	284,2
Seyed Amir Hossein Moosavifard	IRI-S3	282,6
Sungwon Bae	KOR-S1	282,2
Ciocârlan Mihai-Bogdan	ROU-S3	281,5
Manuel Mario Nadir Gilvonio Saez	PER-S2	279,3
Hritom Sarker Oyon	BAN-S4	278,9
Mendel Emanuel Mendelsohn	ROU-S2	278,9
Sainavaneet Mukund	IND-S4	278,1
Lasse Paul Blum	GER-S1	277,
Jakub Hadač	CZE-S2	277,2
Thai Vu Tran	VIE-S5	268,2
Żan Ambrožič	SLO-S4	267,7

Austin Chen	USA-S2	266,5
Adnan Bin Alamgir	BAN-S1	264,85
Yi Xuan Tong	SGP-S5	261,9
Vyacheslav Petrosyan	ARM-S4	260,7
Vladimir Milanov	BUL-S5	260,15
Christian Vogel	GER-S5	259,7
Illia Garbazhii-Romanchenko	UKR-S1	259
Dzaky Rafiansyah	INA-S4	258,8
Miha Brvar	SLO-S3	258,1
Tuna Tülümen	TUR-S4	255,1
Akhmajon Tabarov	KAZ-S3	254
Sarina Farzadnasab	IRI-S2	253
Olita Anastasija Zadoroznaja	LAT-S5	249,5

Bronze Medals		
Name	Student Code	Overall score
Ralf Robert Paabo	EST-S3	249
Luise Köhler	GER-S3	245,9
Viktor Vuković	CRO-S5	245,3
Tian Pu	CAN-S4	245,2
Zahran Nizar Fadhlan	INA-S1	244,1
Maximilian Kirchner	GER-S2	243,4
Prodromos Fotiadis	GRE-S1	242,4
Jinwoo Park	KOR-S4	241,85
Minkyu Song	KOR-S5	240,7
Anton Nüske	GER-S4	240,4
Martin Kudrna	ROU-S4	238,35
Vladimir George Necula	SLO-S2	238,3
Žan Arsov	CZE-S5	238,2
Tomáš Patsch	POL-S4	237,45
Krzysztof Król	EST-S4	234,15
Saskia Põldmaa		

Zehan Huang	SGP-S1	231,4
Ferdinand Ferdinand	INA-S2	230,1
Phanuphat Srisukhawasu	THA-S4	229,8
Eduard Palant	UKR-S2	229,3
Andria Manjavidze	GEO-S2	228,8
Konstantin Krastev	BUL-S3	228,3
Egemen Saritekin	TUR-S3	227,7
Sutthawish Phonglorpisit	THA-S2	227,55
Md Bayezid Bostami	BAN-S2	227,5
Mehmet Öztürk	TUR-S2	224
Philip Wetterberg	SWE-S5	223,3
Ba Linh Nguyen	VIE-S1	222,1
Michał Jagodziński	POL-S2	221,4
Matouš Mišta	CZE-S4	221,2
Piotr Jędrzejczyk	POL-S3	217,4
Dachi Tchotashvili	GEO-S3	217,1
Andrii Zahika	UKR-S4	214,2
Supakorn Paisancharoen	THA-S1	213,6
Indra Rhamadan	INA-S5	212,3
Gniewosz Armista	POL-S1	211,55
Viesturs Streḷčs	LAT-S4	211,5
Bekassyl Yelubay	KAZ-S4	209,8
Zhi Qi Tan	MAS-S4	209,3
Luka Tvalavadze	GEO-S4	208,3
Dohyun Kwon	KOR-S2	207,1
Blanka Schmercz	HUN-S4	206,1
Bryan Herdianto	INA-S3	204,8
Ondrej Juhás	SVK-S3	204,3
Artavazd Harutyunyan	ARM-S3	202,8
Yiğit Karaca	TUR-S1	200
Mihailo Radovanović	SRB-S4	199
Ngoc Phuong Anh Nguyen	VIE-S2	199
Rion Fuchigami	JPN-S1	195,9
Youmo Lai	$\mathrm{CHN}-\mathrm{S} 2$	193,6
Jokūbas Viršilas	LTU-S4	191,6

Statistical summary

Difficulty of the Problems

The Academic Committee devised a set of problems that encompasses virtually all topics covered in the IOAA Syllabus. A statistical analysis of the participant's scores reveals which topics are the most conceptually difficult for students and which topics were mastered by participants. Figure 1 presents histograms of the scores for each problem, and the median and mean scores are shown in Table 1. None of the distributions looks like a Gaussian

The spherical and geometric astronomy problems, T7 "Libration" (mean score 0.156) and T10 "Aldebaran" (0.170), were among the most difficult problems. The problem T2 "Magnetic Field" (mean score 0.165) also caused a lot of trouble for the participants, although it was deemed quite easy by the Academic Committee. The data analysis problem DA2 "Isolated Black Hole" (mean score 0.206) was also quite challenging for the students. Here, the greatest difficulty was related to realizing that the smallest astrometric deflection is observed at the peak of the analyzed microlensing realizing that the smallest astrometric deflection is observed at the peak of the analyzed microlensing
event. In the observational round, two problems requiring the use of the stopwatch had the lowest scores: O1 "Asteroid Occultation" (mean score 0.167), and O2 "Starlink' (0.169)'.

	Problem	Median	Mean	Median/Total	Mean/Total
T1	Neptune	4.60	3.73	0.920	0.746
T2	Magnetic Field	0.00	0.82	0.000	0.165
T3	Microlensing	5.00	3.50	1.000	0.700
T4	Europa	5.00	5.61	0.500	0.561
T5	Dark Energy	7.00	6.36	0.583	0.530
T6	Bolometer	4.00	5.35	0.308	0.411
T7	Libration	0.00	3.13	0.000	0.156
T8	Neutrinos	2.00	6.68	0.100	0.334
T9	Second Eclipse	11.15	9.28	0.557	0.464
T10	Aldebaran	3.00	4.24	0.120	0.170
T11	X-ray Emission	15.50	14.65	0.517	0.488
T12	DART	21.00	20.73	0.525	0.518
T13	LISA	5.00	12.99	0.111	0.289
DA1	Distance to the LMC	36.70	29.98	0.734	0.600
DA2	Isolated Black Hole	13.40	15.45	0.179	0.206
O1	Asteroid Occultation	2.00	2.51	0.133	0.167
O2	Starlink	2.00	2.54	0.133	0.169
O3	Planetary Moons	6.00	5.61	0.600	0.561
O4	Supernova	4.00	4.58	0.400	0.458
P1	Knowledge of the Sky	8.00	8.14	0.400	0.407
P2	Retrograde Mars	8.00	8.81	0.400	0.440
P3	TRAPPIST-1	15.00	15.07	0.429	0.431

Tabela 1: Mean and median scores for each IOAA 2023 problem.

Summary

Minutes of the International Board Meeting held on 14th August 2023

1. Title of Overall Winner

A change of wording in the Statues from "Absolute Winner" to the more neutral "Overall Winner" was proposed and approved unanimously.

2. Use of calculus

The use of calculus in questions was once again discussed, and a draft proposal for changes to the Syllabus, based on the current syllabus used in the International Physics Olympiad, was presented for discussion

The proposal consisted removing the marked sections from the text of the Syllabus:

Preamble

Basic concepts in physics and mathematics at high school level are required in solving the problems. Standard solutions should not involve use of calculus and/or the use of complex numbers and/or solving differential equations.

Data Analysis part

The data analysis section focuses on the calculation and analysis of the astronomical data provided in the problems. Additional requirements are as follows:
Proper identification of error sources, calculation of errors, and estimation of their influence on the final results.
Proper use of graph papers with different scales, e.g., polar and logarithmic papers. Transformation of the data to get a linear plot and finding the "Best Fit" line approximately
Basic statistical analysis of the observational data.
Knowledge of the most common experimental techniques for measuring physical quantities mentioned in Part A.

Mathematical Methods and tools

Numerical Methods	Linearisation of equations and expres- sions, Iterative solving of functions, esti- mating area under a curve by graphical method and/or by integration and/or by numerical approximations, Taylor series approximations of common functions
Basic Calculus	Derivatives of elementary functions, their sums, products, quotients, and nested functions. Integration as the inverse pro- cedure to differentiation. Finding definite and indefinite integrals for elementary functions, and sums of functions. Geo- metric interpretation of derivatives and integrals. Finding constants of integra- tion using initial conditions.
Vectors	Basic properties of vector sums, dot and cross products, Geometrical interpre- tation of a time derivative of a vector quantity
Geometric Instruments	Use of geometric compass and protrac- tor
Statistics \& Error Analysis	Mean, Median, Mode, percentiles, box plots, Standard deviation, basic proba- bilities, relative errors, error estimation using maximum error and/or standard error

Finally, the proposal included the addition of a general regulation that "the use of the mathematical techniques listed above is for ease of modelling an astrophysical system. Testing expertise in these techniques should never be the primary focus of any problem in IOAA." This regulation would be part of academic guidelines provided to each host.

A number of leaders remarked, calculus is either not on the school curriculum at all or appears only in the final year, and thus the presence of calculus in the problem may scare students. Other leaders noted that the students see calculus and further mathematics in the training camps. It was noted that the boundaries of what [mathematics] is allowed should be defined. Other suggestions included: providing a list of elementary functions; providing linear regression formulae; dividing the [Syllabus] into mandatory and optional parts. The leaders were asked to send further comments and suggestions to the EC by email. No further action was taken.

3. Defining valid calculator types

Even basic calculators now available in most countries include integral function and iterative solving and finding calculators without these functions is becoming increasingly difficult. Thus the EC proposed to expand the list of allowed calculators to include those with such in-built functions. Calculators with customised storage of constants, programmable formulae, AI, and graphing options would still not be allowed. The proposa to allow more functions and enlarge the list of allowed calculators was approved unanimously following a discussion.

4. Composition of International Board

A proposal was presented for changes to the Statutes to clarify the structure of the International Board, following previous discussions during the IOAA 2021 in Colombia. The proposed changes are as follows:

Current text:

Statute \#4 para 4:
\rightarrow The team leaders each become equal and independent members of the International Board for the period until the beginning of the next competition.
Statute \#15 para 1:
\rightarrow The International Board is chaired by a representative of the organising country.

Proposed Change:

Statute \#4 para 4:
\rightarrow The team leaders each become equal and independent members of the International Board.
Statute \#15 para 1:
\rightarrow For the duration of the event, the International Board is chaired by a representative of the organising country.
Statute \#17 (add bullet points at the end):
\rightarrow The term of the international board is defined to be from the start of one competition till the start of the next competition.
\rightarrow Individual members may choose to opt out of the international board, by nominating their replacement from the same country. Requests for such replacements may be approved by IOAA EC after due consideration.
\rightarrow From the time of conclusion of one IOAA till the start of the next IOAA, the international board is chaired by the IOAA president.
\rightarrow IOAA EC members are ex-officio members of the international board.

During discussion it was noted that the appointed host country representative must agree to be the IBM chair. Voting on the proposal will take place after at least 3 months in accordance with the Statutes.

5. Guidelines for hosts, in case they are unable to accommodate all registration requests

Hosts are obligated to make every possible effort to include all the countries which have participated in IOAA in the last 3 years. In addition, it is expected that hosts will also accommodate requests of participation from countries which have participated sometime in the past as well as new countries. However, at the same time, it is understood that in some cases the hosts may be forced to put a limit on the number of participants for logistical reasons beyond their control (e.g. number of rooms in hotel / hostel or availability of jury or telescope examiners). A draft procedure was outlined by the EC as follows:

Protocol for accommodating maximum teams during IOAA

	Criteria	Plan A	Plan B	Plan C	Plan D
1	Host countries of last 10 years + committed hosts for next 5 years	$5+2$	$5+2$	$5+2$	$5+2$
2	All remaining past hosts all committed future hosts	$5+2$	$5+2$	$5+2$	$35+12$
3	All other countries in attending all 3 IOAAs in last 3 years	$5+2$	$3+1$	$3+1$	$3+1$
4	All other countries at- tending at least 1 IOAA within last 3 years	$5+2$	$3+1$	$3+1$	$3+1$
5	All other past partici- pants	$5+2$	$3+1$	$2+1$	Obs.
6	All new countries	$5+2$	$3+1$	$2+1$	Obs.
7	Guest teams	$5+2$	$3+1$	$2+1$	NA

During discussion the following points were made:

\rightarrow All teams in the same category must be treated equally.
\rightarrow Differences in team sizes create imbalances.
\rightarrow The timescale of future hosts needed to be defined.
\rightarrow It might difficult to explain to national funding agencies that a team might not be able to send a 5 -student team in the future
\rightarrow The proposal prioritises traditional teams and might not encourage new teams. but there is no better plan. Observers/guest teams should be limited instead to maximise students
\rightarrow Budget is not the only limiting factor, e.g. physical space for tests, students hotel, etc. (However some of these factors can be solved with a large enough budget.)
\rightarrow rows 1 and 2 should be merged, and 5 and 6 should be swapped.
\rightarrow We need to retain the new countries we invite.
\rightarrow Small countries with small budgets will be more impacted. Equal number of participants would be more fair.
\rightarrow Countries must declare when they will be hosts after 5 years of participation, and this is not being observed.
\rightarrow Smaller neighbouring countries can collaborate amongst themselves. Co-hosting by 2 countries should be encouraged.

The proposal was remanded for further review by the EC.

6. Defining observer fees and guest team fees

The EC made a proposal to revise the structure and amount of observer and guest fees, noting that the fees applied at IOAA were inadequate to cover rising costs and much less than other Olympiads. It was also proposed that the hosts recognise non-scientific members of the delegation (spouses / family members of scientific mentors, parents of students, etc.) as 'visitors' and may offer additional excursions / activities for them on some of the IBM days.

During discussion it was noted that part of the fees should be made available for use by the EC, and that the exact amounts perhaps should be at the discretion of the host. Nevertheless, in the final vote, an Observer/Guest team member fee of 1600 EUR was approved unanimously, and a Visitor category with a fee of 2000 EUR was approved unanimously. Both fees may be revised after 5 years.
E.g. if teams in category 4 are included only under plan B, then teams in categories 5/6/7 cannot be offered plan A. They can be offered either plan B or C or D. Guest teams only after all others.

7. Introducing fee for the main team

Given the rising costs of hosting and a participation fee for the main teams was proposed. Of the other olympiads, only the International Mathematics Olympiad and the International Olympiad on Informatics have either zero or very modest fee, however both have multi-year sponsorship deals with major software firms. All other Olympiads charge a participation fee. The following fee structure was proposed.

Default participation fee for IOAA each year from 2027 will be 1900 EUR per team. In the intermediate years, we propose a gradual increase in the participation fee. In 2024, there will be no participation fee, in 2025 it will be 600 EUR per team, and in 2026 it will be 1200 EUR per team. For delegations smaller than 5 persons (students+leaders), fees will be charged instead at the rate of 400 EUR per person.
The countries which have hosted IOAAs in the past, without charging any participation fee, will be exempt from the participation fee until 10 years after their hosting.
The host country may choose to offer additional discounts for the teams willing to pay the participation fee a few months in advance. The participation fee amount may be reconsidered by the IOAA board every five years.

During discussion the following points were made
\rightarrow Fees adds strength to negotiations with government; on the other hand, fees are small part of total [host] budget
\rightarrow Proposal favours well-established countries and discourages smal countries.
\rightarrow We need to know where the fees will be used (90\%-95\% to host country organisation, and the rest to a common pool to fund calculators, proceedings etc). Transparency is essential. Need to set up a company/organisation/bank account etc.
\rightarrow Some countries [with small annual local budgets] will not be able to cover the additional costs; different countries have different costs of organisation. Hard to find funding for astronomy. IOAA may become a private event,
\rightarrow Fee for newcomers should be low or zero.
\rightarrow Free for all is not possible anymore.
\rightarrow Fees would be too high to Latin American countries; however fees can be discussed with and adjusted by hosts.
\rightarrow Fees only work if they are flat [i.e. equal].

The final vote on this will be conducted after 3 months in accordance with the Statutes.

8. Future hosting

Brazil confirmed hosting of the 17th IOAA between 17-26 August 2024 Potential future hosts (to be confirmed) are:

2025 - Iran or Kyrgyzstan
2026 - Malaysia
2027 - Germany
2028 - Türkiye
2029 - S. Korea

In addition Nepal expressed an interest in hosting IOAA Jr in 2024 and Thailand confirmed hosting IOAA Jr in 2026

9. Other matters

Cristian Pirghie (ROM) presented a report about the first IOAA Jr (2022). Loukas Zachella (GRE) talked about the next IOAA Jr (2023).

Posters
 and media

> The organizers of the 16th International Olympiad on Astronomy and Astrophysics would like to thank Professor Mihail Sandu.

For over a dozen years, Professor Sandu has been preparing IOAA task studies, which are provided free of charge to the Olympiad participants. This is an excellent source of knowledge for training and Olympic preparations.

Professor Sandu graduated from the University of Bucharest and the Tourism Technological Highschool in Călimăneşti. For many years, he has been teaching physics to primary and secondary school students and has also organized extracurricular activities for students with talent for science.

He is the author of physics books for students, he wrote and published tens of physics exercises (problems) books, targeting mainly the high performance goal, as well as physics books for highschool teachers, preparing them in obtaining the degrees in teaching. He also hel university courses for the participating students and teachers to the International Physics Olympiads.

He is a member of the National Committee of Physics of the Ministry of Education and Research in Romania. In 1996, at his proposal, the National Physics Olympiad was held at Calimanesti and Ramnicu Valcea. He was author of the tasks for the Olympiad

His books were distributed free of charge among participants of the International Astronomy and Astrophysics Olympiad in the years 2014-2023.

The Morning Star

$\underset{\sim}{\text { ® N M M Pin }}$

¿Morning - = $/ / / / /$ Star

$\stackrel{\circ}{\text { ¢ }}$ Morning - = $/ 1 / 1 /$ Star

$\stackrel{\circ}{5}$ Morning - = $/ 1 / / /$ Star

Headlines

16th International Olympiad on Astronomy and Astrophysics begins! 250 students from 50 countries will compete in Katowice and Chorzów."

naszemiasto.pl

For the next 10 days the Silesian Voivodeship will be one of the most important places on the world's astronomy map."

TVP Nauka

Katowice: Polish student among the gold medalists of the Internationa Olympiad on Astronomy and Astrophysics!"

Wnp.pl - Economic Portal

The International Olympiad on Astronomy and Astrophysics returns to Chorzów and Katowice. „I'm glad to be here again, after twelve years"

We have a lot in common. You are looking for stars in the sky. We are also a kind of constellation, composed of as many as 41 stars - cities and towns that creates the Upper Silesian-Zagłębie Metropolis. We have over 2 million inhabitants. If we were one star - we were the brightest star in the Polish sky - the largest Polish city. I join in the wishes and congratulations. I wish you satisfaction from your scientific achievments. I hope that after them you will also find time to get to know our Metropolis. - said Kazimierz Karolczak, chairman of the Metropolis, during the opening of the event.
metropoliagzm.pl

I congratulate not only the winners, but also each of the teams taking part in this amazing, truly cosmic competition, the real stake of which is to constantly expand knowledge about the universe - astrophysics and astronomy. In fact everyone is a winner. We are honored that the Silesian Voivodeship hosted this international scientific competition. I hope that all its participants felt at home with us, and one day, perhaps in the near future, you will come back to us with your families or friends to show them our region and, of course, the Silesian Planetarium to see millions of stars. Thank you for participating in the Olympiad and come visit us again - the voivodeship marshal, Jakub Chełstowski during the closing ceremony of the 16th IOAA.

Photo gallery
061 | عZOZ puppod D!sə|!s $\forall \forall$ OI 4791

Behind the scenes

The team responsible for "Proceedings of the 16th International Olympiad on Astronomy and Astrophysics 2023" had met on October 6-8, 2023 in Wisła to determine the structure and content of this publication. During the meeting, a night sky observation zone was created, thanks to which it was possible to thoroughly verify the information contained in this book.

Proccedings of the 16th International Olympiad on Astronomy and Astrophysics (IOAA) Silesia, Poland

Edited by:

Jarosław Juszkiewicz

Co-editors:

Damian Jabłeka

Waldemar Ogłoza
Anna Skrzypecka

Illustration photos:
Damian Jabłeka

Photographs:
Paweł Mikołaczyk - PAMEDIA
Piotr Margraf — PAMEDIA

DTP:
Marcin Kasperek - KlarStudio.pl

[]. Europejskie Miasto Nauki

 Katowice 2024AKADEMIA KOPERNIKAŃSKA

Media Patron

TTVP
NAUKA

[^0]:

